HEAT TRANSFER THROUGH CONDUCTION AND CONVECTION

Sl. No.	Material parameter	Symbol	Unit
1	Thermal conductivity of the material , <i>k</i> Definition: amount of heat conducted between two points at 1 m interval inside a conducting solid when the temperature of the conducting solid is changed by 1 Kelvin or 1 degree centigrade from the ambient temperature.	k	$\frac{W}{mK}$
2	Convection heat transfer coefficient or Convection film transfer coefficient , <i>h</i> Definition: amount of heat convected from a conducting solid to a conducting fluid over $1 m^2$ area when the temperature of the conducting solid is changed by 1 Kelvin or 1 degree centigrade from the ambient temperature.	h	$\frac{W}{m^2K}$
3	End cross-sectional area of the conducting solid or end area of the prismatic conducting solid	A	m^2
4	Temperature at any point in the conducting solid	Т	$K \text{ or } ^{o}C$
5	Ambient temperature of the surroundings	T_{∞}	$K \text{ or } ^{o}C$
6	Perimeter length of the conducting surface	Р	т
7	Length of the conducting solid	L	т
8	Heat generated per unit volume by a source or sink	Q	m^3

Finite element equation for thermal problems

 ${f}_{2\times 1} = [k]_{2\times 2} {T}_{2\times 1}$ Watts= $\frac{\text{Watts}}{\text{Kelvin}} \times \text{Kelvin}$ or Watts= $\frac{\text{Watts}}{\text{degree Celsius}} \times \text{degree Celsius}$ ${f}_{2\times 1} = { \begin{array}{c} \text{Column vector of nodal heat - describes how heat is conducted and/or convected} \\ \text{from or to the conducting solid through perimeter surface area and/or end surface} \\ \text{area by direct contact or convection and/or internal heat generation (source) / heat} \\ \text{dissipation (sink).} \end{array}$

 $[k]_{2\times 2} =$ Thermal stiffness matrix – describes the heat conducted and convected (through various modes as described above) for 1 degree change in temperature.

 $\{T\}_{2\times 1}$ = Column vector of nodal temperatures.

STIFFNESS MATRIX TERMS

1. Conduction :

Amount of heat conducted by the conducting solid

2. Convection through perimeter surface area

Amount of heat convected from the conducting solid to the conducting fluid through perimeter surface area

3. Convection through end surface area

Amount of heat convected from the conducting solid to the conducting fluid through end surface area – for i^{th} node or j^{th} node only.

$$\frac{kA}{L} = \left(\frac{W}{mK}\right)\frac{m^2}{m} = \frac{W}{K}$$

$$hPL = \left(\frac{W}{m^2 K}\right)m \times m = \frac{W}{K}$$

$$hA = \left(\frac{W}{m^2 K}\right)m^2 = \frac{W}{K}$$

Consider a 1-D 2-noded linear thermal bar element. It has two nodes. At each node, there is only one degree of freedom, namely, temperature, T. Hence, there are **two** degrees of freedom per element. And the size of the stiffness matrix is 2×2 .

FORCE MATRIX TERMS

1. Perimeter surface area convection

Amount of heat through perimeter surface area

2. End surface area convection

Amount of heat through end surface area

3. Perimeter surface area heat flux

Amount of heat through perimeter surface area

4. End surface area heat flux

Amount of heat through end surface area

5. Any internal heat generation or dissipation

Amount of heat through end surface area

$$hPLT_{\infty} = \left(\frac{W}{m^2 K}\right) \times m \times m \times K = W$$

$$hAT_{\infty} = \left(\frac{W}{m^2 K}\right) \times m^2 \times K = W$$

$$qPL = \left(\frac{W}{m^2}\right) \times m \times m = W$$

$$qA = \left(\frac{W}{m^2}\right) \times m^2 = W$$

$$QAL = \left(\frac{W}{m^3}\right) \times m^2 \times m = W$$

Finite element equation for 1-D thermal conduction and convection problem

$$\begin{bmatrix} k \end{bmatrix}_{2\times 2} = \frac{KA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{hPL}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} + hA \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
Thermal Stiffness Axial conduction Perimeter surface area convection at t^{th} node or $hA \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Thermal Stiffness Axial conduction Perimeter surface area convection at t^{th} node or $hA \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
End surface area convection at j^{th} node
$$\begin{bmatrix} f \end{bmatrix}_{2\times 1} = \frac{hPLT_{\infty}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + hAT_{\infty} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{qPL}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + qA \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{QAL}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
Column Perimeter End surface area convection area heat heat flux at or or dissipation
$$hAT_{\infty} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad qA \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
End surface area convection area heat heat flux at or or dissipation
$$hAT_{\infty} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad qA \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

End surface area heat flux is produced by direct contact of a heat source with the conducting solid. For example, if a heated iron-box is placed on a metal surface, heat is directly transferred from the iron-box to the metal surface through conduction. No convection occurs in this case.