SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Coimbatore-35

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade

Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

19ECB212 - DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 - DISCRETE FOURIER TRANSFORM

TOPIC - FAST FOURIER TRANSFORM - DIT

- Conversion from time to frequency domain is slow
- Cannot able to apply for vast applications
- Filtering of the signals is also a slow process

- The Fast Fourier Transform (FFT) is a family of algorithms that calculates efficiently the Discrete Fourier Transform (DFT)
- The DFT is also a sequence, $X[k]$
- This efficiency of the FFT is at a maximum when the length of the sequence is a power of 2 , i.e., $N=2^{p}$, with p is a positive integer
- The complexity of FFT algorithms is $\mathrm{O}\left(\mathrm{Nlog}_{2} \mathrm{~N}\right)$.

Time Domain
$s(t)$

Frequency Domain $S(\omega)$

DIT • Decimation in Time

DIF

- Decimation in Frequency

RADIX 2 DIT FFT

4 POINT DECIMATION IN TIME FFT

8 POINT DECIMATION IN TIME FFT

DECIMATION IN TIME FFT

INPUT SEQUENCE ORDER

Original	Binary Form	Reversed Form	Final
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

COMPLEX MULTIPLICATIONS

- Each inner product requires N complex multiplications
- There are N inner products
- Hence we require N^{2} multiplications
- However, the first row and first column are all 1 s, and should not be counted as multiplications
- There are $2 \mathrm{~N}-1$ such instances
- Hence, the number of complex multiplications is $N^{2}-2 N+1$, i.e., $(N-1)^{2}$

COMPLEX ADDITIONS

- Each inner product requires N-1 complex additions
- There are N inner products
- Hence we require $N(N-1)$ complex additions
- No. of complex multiplications: $(N-1)^{2}$
- No. of complex additions: $N(N-1)$

DECIMATION IN TIME

Given $x(n)=\{1,2,3,4\}$, find $X[k]$ using 4 Point DIT FFT algorithm

DECIMATION IN TIME - STAGE 1

Given $x(n)=\{0,1,2,3,4,5,6,7\}$, find X[k] using DIT FFT algorithm

DIFFERENCE B/W DIRECT COMPUTATION \& RADIX-2 FFT

S.No.

Direct Computation

Radix 2 FFT

Direct computation requires large
1 number of computations as compared with FFT algorithms.

Radix-2 FFT algorithms requires less number of computations.

Processing time is more and more for Processing time is less hence these
2 large number of N hence processor algorithms compute DFT very quickly as remains busy. compared with direct computation.

3 Direct computation does not requires splitting operation.

Splitting operation is done on time domain basis (DIT) or frequency domain basis (DIF)

As the value of N in DFT increases, the
4 efficiency of direct computation
As the value of N in DFT increases, the decreases.

ASSESSMENT

1. What is meant by FFT and list the methods of FFT.
2. In Fast Fourier Transform, ------- domain can be converted into ------- domain.
3. In Decimation in Time, the flow graph is represented as -----, 4 - Point and -----FFT.
4. What is the difference between direct computation and Radix 2 FFT.
5. Determine DIT of $\mathrm{x}(\mathrm{n})=\{1,2,3,4\}$
6. In Fast Fourier Transform,

No. of complex multiplications:
No. of complex additions:

THANK YOU

