SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 19ITB201 DESIGN AND ANALYSIS OF ALGORITHMS
II YEAR/ IV SEMESTER

UNIT - I INTRODUCTION

TOPIC - IMPLEMENTATION OF GCD USING CONSECUTIVE INTEGER CHECKING ALGORITHM

NOTION OF AN ALGORITHM

- Three methods for solving gcd of two integers:

1. Euclid's algorithm
2. Consecutive integer checking algorithm
3. Middle-school procedure

CONSECUTIVE INTEGER ALGORITHM

Common divisor cannot be greater than the smaller of two numbers. $t=\min \{m, n\}$
If t divides both m and n then t is the answer, if not decrease t by 1 . Process continues till answer.

CONSECUTIVE INTEGER ALGORITHM

Steps:

Step1: Assign the value of $\min \{m, n\}$ to t.
Step2: Divide m by t. If the remainder of this division is 0 , go to
Step3;otherwise, go to Step 4.
Step3: Divide n by t . If the remainder of this division is 0 , return the value of t as the answer and stop; otherwise, proceed to Step4.
Step4: Decrease the value of t by 1 . Go to Step2.

CONSECUTIVE INTEGER ALGORITHM

Example:

1. $\operatorname{Gcd}(12,8)$

$$
\begin{aligned}
m & =12 \& n=8 \\
t & =\min (12,8) ; \quad t=8
\end{aligned}
$$

$\mathbf{m} \bmod \mathbf{t}=12 \bmod 8=4$ not equal to $0 \quad \& \mathbf{n} \bmod \mathbf{t}=8 \bmod 8=0$
So, $\mathbf{t}=\mathbf{t}-\mathbf{1}=8-1=7$
$12 \bmod 7=5$ not equal to 0
Process continues till $\mathbf{t}=\mathbf{4}$ then,
Thus $\operatorname{gcd}(12,8)=4$
\& $8 \bmod 7=1$ not equal to 0
$12 \bmod 4=0 \quad \& 8 \bmod 4=0$
.

MIDDLE-SCHOOL PROCEDURE

Steps :

Step1: Find the prime factors of m.
Step2: Find the prime factors of n.
Step3: Identify all the common factors in the two prime expansions found in Step1 and Step2. (If p is a common factor occurring Pm and Pn times in m and n, respectively, it should be repeated in $\min \{P m, P n\}$ times.)
Step4: Compute the product of all the common factors and return it as the gcd of the numbers given.

MIDDLE-SCHOOL PROCEDURE

Example :

1. $\operatorname{gcd}(120,72)$
$120=2 * 2 * 2 * 3 * 5$
$72=2 * 2 * 2 * 3 * 3$
$\operatorname{gcd}(120,72)=2 * 2 * 2 * 3=24$
$\operatorname{gcd}(120,72)=24$
