
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

16IT302 – DESIGN AND ANALYSIS OF ALGORITHMS

III YEAR V SEM

UNIT-I-Introduction

TOPIC: Mathematical Analysis for Non Recursive Algorithm

DEPARTMENT OF INFORMATION TECHNOLOGY

Prepared by
T.Shanmugapriya,AP/IT

ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

Subject :Design and Analysis of Algorithm

Unit :I

Mathematical Analysis for
Non Recursive Algorithm

http://www.free-powerpoint-templates-design.com/free-powerpoint-templates-design

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Fundamentals of the Analysis of Algorithm

Efficiency

 Analysis Framework

 Asymptotic Notations and its properties

 Mathematical analysis for Recursive algorithms.

 Mathematical analysis for Non recursive algorithms.

• We just count the number of basic operations.

• Loops will become series sums

• So we'll need some series formulas

Mathematical analysis for Non recursive

algorithms.

Counting

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Example: Maximum Element

Algorithm MaxElement(A[0...n-1])

maxval ← A[0]

for i ← 1 to n-1 do

if A[i] > maxval then maxval ← A[i]

return maxval

What is the problem size? n

Most frequent operation? Comparison in the for loop

Depends on worst case or best case? No, has to go through the entire array

C(n) = number of comparisons

C(n) = ∑i=1
n-1 1 = n-1 ε Θ(n)

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Mathematical Analysis For Non Recursive

Algorithms
General Plan for Analyzing the Time Efficiency of Non recursive Algorithms

• Decide on a parameter (or parameters) indicating an input’s size.

• Identify the algorithm’s basic operation. (As a rule, it is located in th

e inner- most loop.)

• Check whether the number of times the basic operation is

executed depends only on the size of an input. If it also depends on

some additional property, the worst-case, average-case, and, if

necessary, best-case efficiencies have to be investigated separately.

• Set up a sum expressing the number of times the algorithm’s basic

operation is executed.4

• Using standard formulas and rules of sum manipulation, either find

a closed- form formula for the count or, at the very least, establish its

order of growth.

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Series Rules and Formulas

• Multiplication of a Series: ∑i=l
u cai = c∑i=l

u ai

• Sum of two sequences: ∑i=l
u (ai + bi) = ∑i=l

u ai +

∑i=l
u bi

• Sum of constant sequences: ∑i=l
u 1 = u - l + 1

• Sum of linear sequences: ∑i=0
n i = n(n+1)/2 = length

of sequence times the average of the first and last el

ements

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Example: Uniqueness

Consider the element uniqueness problem: check whether all the

elements in a given array of n elements are distinct. This problem can

be solved by the following straightforward algorithm.

Algorithm UniqueElements(A[0...n-1])

for i ← 0 to n-2 do

for j ← i+1 to n-1 do

if A[i] = A[j] return false

return true

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Uniqueness

1. Problem size? n

2. Basic operation? if-test

3. Worst and best case are different. Best case is when the first two elements are equal the

n Θ(n)

Worst case is if array elements are unique then all sequences of the for loops are

executed

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Uniqueness

4. The sum:

Cworst(n) = ∑i=0
n-2∑j=i+1

n-1 1

5. Solove

Cworst(n) = ∑i=0
n-2[(n-1) - (i+1) + 1]

= ∑i=0
n-2[n-1- i] = ∑k=n-1

1k where k = n - i -1

Cworst(n) = ∑k=1
n-1k = (n-1)(n-1+1)/2 = n(n-1)/2 ε Θ(n2)

Note for a unique array there is minimal of n(n-1)/2 comparisons. Is this neces

sary, is there a better algorithm?

Yes we could pre-sort.

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Example: Binary Length

The following algorithm finds the number of binary digits in the binary representa

tion of a positive decimal integer.

Algorithm Binary(n)

count ← 1

while n > 1 do

count++

n ← floor(n/2)

return count

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Binary Length

1. Problem size? integer, n

2. Basic operation? comparison in the while loop

3. Worst and best case are the same.

4. The sum:

How many times is the while loop executed?

approximately lg(n), exactly lg(n) + 1 because it must fail once

C(n) = ∑i=1
lg(n)+1 1

5. Solve

C(n) = lg(n) +1 - 1 + 1 ε Θ(lg(n))

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Example -Matrix multiplication

Given two n n matrices A and B, find the time efficiency of the

definition-based algorithm for computing their product C AB.

By definition, C is an n n matrix whose elements are computed

as the scalar (dot) products of the rows of matrix A and the col

umns of matrix B:

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1],

B[0..n − 1, 0..n − 1])

//Multiplies two square matrices of order n by the definition-based algorith

m

//Input: Two n × n matrices A and B

//Output: Matrix C = AB

for i ← 0 to n − 1 do

for j ← 0 to n − 1 do

C[i, j] ← 0.0

for k ← 0 to n − 1 do

C[i, j] ← C[i, j] + A[i, k] ∗ B[k, j]

return C

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Example -Matrix multiplication

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

Assessment
Write the missing steps to analyze non recursive algorithms

1. input’s size

2. ---------------------

3. number of times the basic operation is executed

4. ---------------------

5. ---------------------

19.05.2020 Analysis for non recursive algorithm/16IT302-DAA/T.Shanmugapriya,AP/IT/SNSCT 3/17

