DEPARTMENT OF INFORMATION TECHNOLOGY

$16 I T 302$ - DESIGN AND ANALYSIS OF ALGORITHMS

III YEAR V SEM
UNIT-I-Introduction

TOPIC: Mathematical Analysis for Non Recursive Algorithm
Prepared by
T.Shanmugapriya,AP/IT

Fundamentals of the Analysis of Algorithm Efficiency

> Analysis Framework
$>$ Asymptotic Notations and its properties
> Mathematical analysis for Recursive algorithms.
> Mathematical analysis for Non recursive algorithms.

Mathematical analysis for Non recursive algorithms.

Counting

- We just count the number of basic operations.
- Loops will become series sums
- So we'll need some series formulas

Example: Maximum Element

Algorithm MaxElement ($A[0 . . . n-1]$)
maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ maxval then maxval $\leftarrow A[\mathrm{i}]$ return maxval

What is the problem size? n
Most frequent operation? Comparison in the for loop
Depends on worst case or best case? No, has to go through the entire array
$C(n)=$ number of comparisons
$C(n)=\sum_{i=1}{ }^{n-1} 1=n-1 \varepsilon \boldsymbol{\Theta}(\boldsymbol{n})$

Mathematical Analysis For Non Recursive Algorithms

General Plan for Analyzing the Time Efficiency of Non recursive Algorithms

- Decide on a parameter (or parameters) indicating an input's size.
- Identify the algorithm's basic operation. (As a rule, it is located in th e inner- most loop.)
- Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, average-case, and, if necessary, best-case efficiencies have to be investigated separately.
- Set up a sum expressing the number of times the algorithm's basic operation is executed. 4
- Using standard formulas and rules of sum manipulation, either find a closed- form formula for the count or, at the very least, establish its order of growth.

Series Rules and Formulas

- Multiplication of a Series: $\sum_{i=l}{ }^{u} c a_{i}=c \sum_{i=l}{ }^{u} a_{i}$
- Sum of two sequences: $\sum_{i=l}{ }^{u}\left(\boldsymbol{a}_{i}+\boldsymbol{b}_{i}\right)=\sum_{i=l}{ }^{u} \boldsymbol{a}_{i}+$ $\sum_{i=l}{ }^{u} \boldsymbol{b}_{i}$
- Sum of constant sequences: $\sum_{i=l}{ }^{u} \mathbf{1}=\boldsymbol{u} \boldsymbol{- l + 1}$
- Sum of linear sequences: $\sum_{i=0}{ }^{n} \boldsymbol{i}=\boldsymbol{n}(\boldsymbol{n} \mathbf{+ 1}) / \mathbf{2}=$ length of sequence times the average of the first and last el ements

Example: Uniqueness

Consider the element uniqueness problem: check whether all the elements in a given array of n elements are distinct. This problem can be solved by the following straightforward algorithm.

Algorithm UniqueElements($A[0 \ldots n-1]$)

List	List has duplicates
10	
20	
30	
30	
50	
60	
70	

Uniqueness

1. Problem size? n
2. Basic operation? if-test
3. Worst and best case are different. Best case is when the first two elements are equal the
$\mathrm{n} \boldsymbol{\Theta}(\boldsymbol{n})$

Worst case is if array elements are unique then all sequences of the for loops are executed

Uniqueness

4. The sum:
$C_{\text {worst }}(n)=\sum_{i=0}{ }^{n-2} \sum_{j=i+1} n-1 \mathbf{1}$
5. Solove

$$
\begin{aligned}
C_{\text {worst }}(n) & =\sum_{i=0} 0^{n-2}[(n-1)-(i+1)+1] \\
& =\sum_{i=0}^{n-2}[n-1-i]=\sum_{k=n-1} k \quad \text { where } k=n-i-1 \\
\boldsymbol{C}_{\text {worst }}(\boldsymbol{n}) & =\sum_{k=1}^{n-1} \boldsymbol{k}=(\boldsymbol{n} \mathbf{- 1})(\boldsymbol{n} \mathbf{- 1}+\mathbf{1}) / \mathbf{2}=\boldsymbol{n}(\boldsymbol{n}-\mathbf{1}) / \mathbf{2} \boldsymbol{\Theta}\left(\boldsymbol{n}^{\mathbf{2}}\right)
\end{aligned}
$$

Note for a unique array there is minimal of $n(n-1) / 2$ comparisons. Is this neces sary, is there a better algorithm?
Yes we could pre-sort.

Example: Binary Length

The following algorithm finds the number of binary digits in the binary representa tion of a positive decimal integer.

```
Algorithm Binary(n)
count }\leftarrow
while }n>1\mathrm{ do
count++
n}\leftarrow\mathrm{ floor(n/2)
return count
```

Decimal	Biinary
1	0000
1	0001
2	0010
3	0011
4	00100
5	0100
6	0101
7	0110
7	0111
8	1000
10	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Binary Length

1. Problem size? integer, \boldsymbol{n}
2. Basic operation? comparison in the while loop
3. Worst and best case are the same.
4. The sum:

How many times is the while loop executed?
approximately $\lg (n)$, exactly $\lg (n)+1$ because it must fail once
$C(n)=\sum_{i=1}{ }^{\lg (n)+1} 1$
5. Solve
$C(n)=\lg (n)+1-1+1 \varepsilon \Theta(\lg (n))$

Example -Matrix multiplication

Given two $n n$ matrices A and B, find the time efficiency of the definition-based algorithm for computing their product $C A B$. By definition, C is an $n n$ matrix whose elements are computed as the scalar (dot) products of the rows of matrix A and the col umns of matrix B :

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
b_{4} & b_{5} & b_{6} \\
b_{7} & b_{8} & b_{9}
\end{array}\right]=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
c_{4} & c_{5} & c_{6} \\
c_{7} & c_{8} & c_{9}
\end{array}\right]
$$

ALGORITHM MatrixMultiplication(A[0..n-1, $0 . . n-1]$,

 $B[0 . . n-1,0 . . n-1])$//Multiplies two square matrices of order n by the definition-based algorith m
$/ /$ Input: Two $n \times n$ matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow 0.0$
for $k \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]$
return C

Example -Matrix multiplication

and the total number of multiplications $M(n)$ is expressed by the following triple sum:

$$
\begin{aligned}
& \mathrm{M}(\mathrm{n})=(x+a)^{n}=\sum(\mathrm{n}) \sum(\mathrm{n}) \Sigma(\mathrm{n}) \\
& T(n) \approx c m M(n)=n^{3},
\end{aligned}
$$

Assessment

Write the missing steps to analyze non recursive algorithms

1. input's size
2. \qquad
3. number of times the basic operation is executed
4. \qquad
5.

Thank you!

