

GCD(Greatest common divisor)

$>$ The greatest common divisor of two nonnegative, not-both-zero integers m and n, denoted $\operatorname{gcd}(m, n)$, is defi ned as the largest integer that divides both m and n evenly, i.e., with a remainder of zero
$>$ Euclid of Alexandria (third century B.c.) outlined an algorithm for solving this problem in one of the volume s of his Elements most famous for its systematic exposition of geometry

Euclid's algorithm

Euclid's algorithm is based on applying repeatedly the equality
$\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$,

Where $m \bmod n$ is the remainder of the division of m by n, until $m \bmod n$ is equal to 0 . Since $\operatorname{gcd}($ $m, 0$) $=m$ (why?), the last value of m is also the greatest common divisor of the initial m and n.

For example, $\operatorname{gcd}(60,24)$ can be computed as follows:
$\operatorname{gcd}(60,24)=\operatorname{gcd}(24,12)=\operatorname{gcd}(12,0)=12$.

Euclid's algorithm for computing gcd (m, n)

Step 1 If $n=0$, return the value of m as the answer and stop;
otherwise, proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step

Alternatively, we can express the same algorithm in pseudocode:

ALGORITHM $\operatorname{Euclid}(m, n)$
$/ /$ Computes $\operatorname{gcd}(m, n)$ by Euclid's algorithm
$/ /$ Input: Two nonnegative, not-both-zero integers m and n
$/ /$ Output: Greatest common divisor of m and n
while $n!=0$ do
$r \leftarrow m \bmod n$
$m \leftarrow n$
$n \leftarrow r$
return m

Consecutive integer checking algorithm

Consecutive integer checking algorithm for computing $\operatorname{gcd}(m, n)$
Step 1 Assign the value of $\min \{m, n\}$ to t.
Step 2 Divide m by t. If the remainder of this division is 0 , go to Step 3; otherwise, go to Step 4.

Step 3 Divide n by t. If the remainder of this division is 0 , return the value of t as the answer and stop; otherwise, proceed to Step 4.
Step 4 Decrease the value of t by 1 . Go to Step 2 .

Middle-school procedure

Middle-school procedure for computing $\operatorname{gcd}(m, n)$
Step 1 Find the prime factors of m.
Step 2 Find the prime factors of n.
Step 3 Identify all the common factors in the two prime expansions found in Step 1 and Step 2. (If p is a common factor occurring $p m$ and $p n$ times in m and n, respectively, it should be repeated $\min \{p m, p n\}$ times.)
Step 4 Compute the product of all the common factors and return it as the greatest common divisor of the numbers given.
Thus, for the numbers 60 and 24 , we get
$60=2.2 .3 .5$
$24=2.2 .2 .3$
$\operatorname{gcd}(60,24)=2.2 \cdot 3=12$.

sieve of Eratosthenes

As an example, consider the application of the algorithm to finding the list of primes not exceeding $n=25$:

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2	3		5		7		9		11		13		15		17		19		21		23		25
2	3		5		7				11		13				17		19				23		25
2	3		5		7				11		13				17		19				23		

ALGORITHM Sieve(n)

//Implements the sieve of Eratosthenes
//Input: A positive integer $n>1$
//Output: Array L of all prime numbers less than or equal to n

```
for }p\leftarrow2\mathrm{ to }n\mathrm{ do }A[p]\leftarrow
for }p\leftarrow2\mathrm{ to \ \}\sqrt{}{n}\rfloor\mathrm{ do //see note before pseudocode
    if A[p]\not=0 //p hasn't been eliminated on previous passes
        j
        while}\boldsymbol{j}\leqn\mp@code{do
                A[j]\leftarrow0 //mark element as eliminated
        j}\leftarrowj+
//copy the remaining elements of A to array L of the primes
i\leftarrow0
for }p\leftarrow2\mathrm{ to }n\mathrm{ do
    if }A[p]\not=
            L[i]}\leftarrowA[p
            i\leftarrowi+1
return L
```

Thank you!

