EUCLID'S &LGORITHM

Subject :Design and Analysis of Algorithm Unit :I

ALLPPT.com _ Free PowerPoint Templates, Diagrams and Charts

GCD(Greatest common divisor)

- > The greatest common divisor of two nonnegative, not-both-zero integers m and n, denoted gcd(m, n), is defined as the largest integer that divides both m and n evenly, i.e., with a remainder of zero
- Euclid of Alexandria (third century B.c.) outlined an algorithm for solving this problem in one of the volume

s of his *Elements* most famous for its systematic exposition of geometry

Euclid's algorithm

Euclid's algorithm is based on applying repeatedly the equality

 $gcd(m, n) = gcd(n, m \mod n),$

Where $m \mod n$ is the remainder of the division of m by n, until $m \mod n$ is equal to 0. Since gcd(m, 0) =m (why?), the last value of m is also the greatest common divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

05.05.2020 Unit I

T.Shanmugapriya,AP/IT/SNSCT

Euclid's algorithm for computing gcd(*m*, *n*)

Step 1 If n=0, return the value of *m* as the answer and stop;

otherwise, proceed to Step 2.

Step 2 Divide *m* by *n* and assign the value of the remainder to *r*.

Step 3 Assign the value of n to m and the value of r to n. Go to Step

Alternatively, we can express the same algorithm in pseudocode:

ALGORITHM *Euclid(m, n)*

//Computes gcd(m, n) by Euclid's algorithm

//Input: Two nonnegative, not-both-zero integers *m* and *n*

//Output: Greatest common divisor of m and n

while n!=0 do

 $r \leftarrow m \bmod n$

 $m \leftarrow n$

 $n \leftarrow r$

return m

Consecutive integer checking algorithm

Consecutive integer checking algorithm for computing gcd(m, n)**Step 1** Assign the value of $min\{m, n\}$ to *t*.

Step 2 Divide *m* by *t*. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.

Step 3 Divide *n* by *t*. If the remainder of this division is 0, return the value of *t* as the answer and stop; otherwise, proceed to Step 4.

Step 4 Decrease the value of *t* by 1. Go to Step 2.

Middle-school procedure

7/10

Middle-school procedure for computing gcd(*m*, *n*)

Step 1 Find the prime factors of *m*.

Step 2 Find the prime factors of *n*.

Step 3 Identify all the common factors in the two prime expansions found in Step 1 and Step 2. (If p is a common factor occurring pm and pn times in m and n, respectively, it should be repeated min $\{pm, pn\}$ times.)

Step 4 Compute the product of all the common factors and return it as the greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

 $60 = 2 \cdot 2 \cdot 3 \cdot 5$ $24 = 2 \cdot 2 \cdot 2 \cdot 3$ $gcd(60, 24) = 2 \cdot 2 \cdot 3 = 12$.

sieve of Eratosthenes

As an example, consider the application of the algorithm to finding the list of primes not exceeding n = 25:

2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	2	3		5		7		9		11		13		15		17		19		21		23		25
	2	3		5		7				11		13				17		19				23		25
	2	3		5		7				11		13				17		19				23		

ALGORITHM *Sieve(n)*

//Implements the sieve of Eratosthenes
//Input: A positive integer n> 1
//Output: Array L of all prime numbers less than or equal to n

for $p \leftarrow 2$ to n do $A[p] \leftarrow p$ for $p \leftarrow 2$ to $\lfloor \sqrt{n} \rfloor$ do //see note before pseudocode if $A[p] \neq 0$ //p hasn't been eliminated on previous passes $j \leftarrow p * p$ while $j \le n$ do $A[j] \leftarrow 0$ //mark element as eliminated $j \leftarrow j + p$ //copy the remaining elements of A to array L of the primes $i \leftarrow 0$ for $p \leftarrow 2$ to n do if $A[p] \neq 0$ $L[i] \leftarrow A[p]$ $i \leftarrow i + 1$ return L

