

DEPARTMENT OF MATHEMATICS UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

maments

prsuete R.V.	continuous R.V.
x^{st} moment: $u_1' = E(x) = \sum_{i=1}^{n} x_i P(x_i)$ x^{rd} moment: $u_2' = E(x^2) = \sum_{i=1}^{n} x_i^2 P(x_i)$	$\int_{-\infty}^{\infty} x f(x) dx$ $\int_{-\infty}^{\infty} f(x) dx$
3 rd moment: $u_3^1 = E(x^3) = \sum_{i=1}^n x_i^3 P(x_i)$:	$\int_{-\infty}^{\infty} x^3 f(x) dx$
a_{1p} moment: $M_{i}^{i} = E(x_{i}) = \sum_{j=1}^{j=1} x_{j}^{i} b(x^{i})$	2x fix) dx
$man : u_1'$ $variane : u_2 = u_2' - (u_1')^2$	The state of

I The density function of Random Variable x - 18 F(x) = Kx(8-20, 0 € x ≤ 2. F?nd K, mean. Vosilance, 7th moment Soln.

Solo.

i) Find
$$K$$
.

$$\int_{-\infty}^{\infty} F(x) dx = 1$$

$$\int_{0}^{\infty} Kx(2-x) dx = 1$$

$$K \int_{0}^{\infty} (2x - x^{2}) dx = 1$$

$$K \int_{0}^{\infty} (2x - x^{2}) dx = 1$$

$$K \int_{0}^{\infty} (4 - \frac{8}{3}) dx = 1$$

$$K \left[(4 - \frac{8}{3}) - 0 \right] = 1$$

(An Autonomous Institution) Coimbatore - 641 035

DEPARTMENT OF MATHEMATICS UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

$$K \left[\frac{12-8}{3} \right] = 1$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K = \frac{3}{4}$$

$$K \left[\frac{4}{3} \right] = 1$$

$$K \left[\frac{3}{4} \right] = 1$$

$$K \left[\frac{$$

(An Autonomous Institution)

Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS
UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

Moleon: (u_1') Put Y=1 Pn U_1' $U_1'=6.a'\left[\frac{1}{(1+2)(1+3)}\right]$ $=\frac{12}{12}$

$$A_{j}^{1}=1$$

mean = $1 \Rightarrow E(x) = 1$

Voolance (ug):

$$Vol(x) = E(x^2) - [E(x)]^2$$
$$= u_2' - u_1^2$$

Now we've to find E(x2) on 42 put r=2 90 uz

$$u_{2}' = 6.2^{2} \left[\frac{1}{(2+2)(2+3)} \right]$$

$$= 6.4 \frac{1}{4 \times 5}$$

:.
$$y(\infty) = u_2' - (u_1')^2$$

$$= \frac{6}{5} - 1^2$$

$$Val(x) = \frac{1}{5}$$

(An Autonomous Institution) Coimbatore - 641 035 DEPARTMENT OF MATHEMATICS UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

continuous landom variable x at $f(x) = \int \frac{1}{2} (x+1), -1 < x < 1$ 10, otherworke

Find the mean & vallance of x Soln.

mean =
$$E(x) = \int_{x}^{\infty} x f(x) dx$$

= $\int_{x}^{\infty} x \frac{1}{2} (x+1) dx$
= $\frac{1}{2} \int_{x}^{\infty} (x^{2} + x) dx$
= $\frac{1}{2} \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} \right]^{\frac{1}{2}}$
= $\frac{1}{2} \left[\left(\frac{1}{3} + \frac{1}{2} \right) - \left(\frac{-1}{3} + \frac{1}{2} \right) \right]$

$$= \frac{1}{2} \left[\left(\frac{1}{3} + \frac{1}{2} \right) - \left(\frac{-1}{3} + \frac{1}{2} \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{3} + \frac{1}{2} + \frac{1}{3} - \frac{1}{2} \right]$$

$$= \frac{1}{2} \left(\frac{2}{3} \right)$$

$$mean = 1$$

variable:

$$Voor(x) = E(x^2) - (E(x))^2$$

$$E(x^2) = \int_{-\infty}^{\infty} x^2 F(x) dx$$

$$= \int_{-\infty}^{\infty} x^2 \frac{1}{2} (x+r) dx$$

(An Autonomous Institution)

Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS
UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

$$= \frac{1}{2} \int_{-1}^{1} (x^{3} + x^{2}) dx$$

$$= \frac{1}{2} \left[\frac{x^{4}}{4} + \frac{x^{3}}{3} \right]_{-1}^{1}$$

$$= \frac{1}{2} \left[\frac{1}{4} + \frac{1}{3} - \frac{1}{4} + \frac{1}{3} \right]_{-1}^{1}$$

$$= \frac{1}{2} \left[\frac{1}{4} + \frac{1}{3} - \frac{1}{4} + \frac{1}{3} \right]_{-1}^{1}$$

$$= \frac{1}{2} \left(\frac{2}{3} \right)$$

$$E(x^{2}) = \frac{1}{3}$$

$$VOH(x) = E(x^{2}) - (E(x))^{2}$$

$$= \frac{1}{3} - \left(\frac{1}{3} \right)^{2}$$

$$= \frac{1}{3} - \frac{1}{9}$$

$$VAL(x) = \frac{2}{9}$$

$$Aux = \frac{3}{9}$$

$$Val(x) = \frac{2}{9}$$

$$Aux = \frac{3}{9}$$

and variance.

Scanned with CamScanner

Fand

(An Autonomous Institution) Coimbatore - 641 035 DEPARTMENT OF MATHEMATICS UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

$$* \lor (a) = 0$$

*
$$V(\alpha_{\mathcal{H}}) = \alpha^{9}V(\alpha)$$

*
$$E(ax+p) = a E(x)+p$$

*
$$V(ax+b) = a^2 V(x)$$

* If x & y are prodopendent, then $E(xy) = E(x) \cdot E(y)$

J. If x and y are Independent Tandom Daviable with variance a and 3. Fond vari(3x+4y) Soln. 1 1612 5

$$(\underline{vn})$$
 Var(x) = 2 and Var(y) = 3

$$= 9(2) + 16(3)$$

J. Goven the following probabolity dictabution

compate i).
$$E(x)$$
 ii). $E(x^2)$ iii). $E(2x\pm3)$ iv). $Vor(2x\pm3)$

$$E(x) = \frac{7}{5} x_1 P(x_1)$$

(An Autonomous Institution)

Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS

UNIT-1 (PROBABILITY AND RANDOM VARIABLES)

$$= -3(0.05) - 2(0.1) - 1 (0.3) + 0 + 1(0.3) - 1$$

$$+ 2(0.15) + 3(0.1)$$

$$+ 2(0.15) + 3(0.1)$$

$$= 0.25$$
ii)
$$E(x^2) = \int_{1-3}^{3} x_1^2 P(x_1)$$

$$= (-3)^2 (0.05) + (-2)^2 (0.1) + (-1)^2 (0.3) + 0 + 1$$

$$P(0.3) + 2^2 (0.15) + 3^2 (0.1)$$

$$= 2.95$$
iii)
$$E(2x + 3) = E(2x) + E(3)$$

$$= 2(0.25) + 3$$

$$= 2(0.25) + 3$$

$$= 0.5 + 3$$

$$= 0.5 + 3$$

$$= 0.5 + 3$$

$$= 0.5 + 3$$
iv)
$$Vor_1(x_1) = E(x^2) - (E(x_1)^2)$$

$$= 2.95 - (0.25)^2$$

$$= 2.887$$

$$Vor_2(2x + 3) = 2^2 Vor_2(x_1) = 4 (2.887)$$

$$= 11.548$$

$$10. Using the essult, to evaluate$$

E [(2x+1)2]