
DEPARTMENT OF MCA

19CAT602 – DATA STRUCTURES & ALGORITHMS

I YEAR I SEM

UNIT IV – Greedy and Backtracking

TOPIC:19 – Fundamentals of the analysis of algorithm efficiency

Fundamentals of the analysis of

algorithm efficiency

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA

02/22

Algorithm
Definition:

1. An algorithm is a set of instructions designed to perform a specific task.

2. It is unambiguous set of instructions

3. An algorithm is a set of well-defined instructions in sequence to solve a problem.

Algorithm to add two numbers entered by the

user
Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2

Step 5: Display sum Step 6: Stop

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
03/22

Qualities of a good algorithm

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
04/22

ANALYSIS FRAMEWORK
Efficiency of an algorithm can be in terms of time or space. Thus, checking whether

the algorithm is efficient or not means analyzing the algorithm. This systematic

approach is modelled by a framework called as ANALYSIS FRAMEWORK.

T h e efficiency of an algorithm can be decided by measure the performance of an

algorithms

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
05/22

Analysis of algorithm is the process of investigation of an

algorithm’s efficiency respect to two resources:

I. Running time

II. Memory space

The reason for selecting these two criteria are

 Simplicity

 Generality

 Speed

 Memory
Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
06/22

Time efficiency or time complexity indicates how fast an

algorithm runs.

Space Efficiency or space complexity is the amount of

memory units required by the algorithm including the memory

needed for the i/p & o/p

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
07/22

ANALYSIS OF ALGORITHMS

Analysis of algorithms

Measuring time

complexity

Computing

best,worst and
average case

efficiencies

Measuring Input

size

Measuring running

timeComputing order of

growth of algorihtms

Measuring space

complexity

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
08/22

Space complexity

 The amount of memory required by an algorithm to run.

 To Compute the space complexity we use two factors: constant and instance characteristic

S(p) = C + Sp

C – Constant -> space taken by instruction, variable and identifiers Sp – space dependent upon

instance characteristic

For eg: add(a,b) return a+b S(p) = C +Sp S(p)=C+2

a,b occupy one word size then total size come to be 2

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
09/22

Time complexity

 The amount of time required by an algorithm to run for

completion.

 F o r instance in multiuser system , executing time dependson many factors such as:

1. System load

2. Number of other programs running

3. Instruction set used

4. Speed of underlying hardware

Frequency count is a count denoting number of times of execution of statement

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
10/22

For eg: Calculating sum of n numbers

for(i=0;i<n;i++)

{

sum=sum+a[i];

} Statement Frequency count

i=0 1

i<n N+1

i++ n

Sum=sum+a[i] n

Total 3n+2

Time complexity normally denotes in terms of Oh notation(O).

Hence if we neglect the constants then we get the time complexity to be O(n) 11/22

Eg: Matrics addition

For(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

c[i][j]=a[i][j]+b[i][j]

}

}

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
12/22

The frequency count is:
Statement Frequency count

i=0 1

i<n N+1

i++ n

j=0 N * 1 = n

Initialization
of j

j<n (n+1) =n2 + n times

For
Outer loop

N *

For

Outer loop
j++ n * n = n2

C[i][j]=a[i][j]+b[i][j] n * n = n2

Total 3n2 +4n+2 O(n2)

Measuring an Input size:

 Efficiency measure of an algorithm is directly proportional to the input size or range

 So an alg efficiency could be measured as a function of n, where n is the parameter indicating

the algorithm i/p size.

 For ex: when multiplying two matrices, the efficiency of an alg depends on the no. of

multiplication performed not on the order of matrices.

 The i/p given may be a square or a non-square matrix.

 Some algortihm require more than one parameter to indicate the size of their i/p

 In such situation, the size is measured by the number of bits in the n’s binary

representation:

B=floor(log2 n+1)

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
14/22

Eg:
Sorting

Naive Algorithm – n2

Bes t Algorithm –nlogn

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
15/22

Units for measuring Running time
T h e running time of an alg dependson:

 Speed of a particular computer

 Quality of a program

 Compiler used

To measure the alg efficiency:

Identify the important operation(core logic) of an algorithm.

This operation is called basic operation

 S o compute the no. of times the basic operation is executed will give running

time

B as ic operation mostly will be in inner loop, it is time consuming

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
16/22

Problem statement Input size Basic operation

Searching a key element from
the list of n elements

List of n elements Comparison of key with every
element of list

Perform matrix multiplication The two matrices with order n x
n

Actual multiplication of the
elements in the matrices

Computing GCD of two
numbers

Two numbers Division

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
17/22

Using the formula the computing time can be obtained

T(n)=Cop C(n)

Running time of

basic operation

Execution time of

the basic operation

Number of times the

operation needs to be

executed

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
18/22

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
19/22

Rate of growth of common computing time function

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
20/22

Three case efficient

Worst Case Analysis (Usually Done)
we calculate upper bound on running time of an
algorithm

The element to be searched (x in the above code) is
not present in the array

int arr[] = { 1, 10, 30, 15 };

Searching Element=11

Time complexity=O(n)

Best Case Analysis (Bogus) we calculate lower bound on running time of an
algorithm.

minimum number of operations to be executed

x is present at the first location

int arr[] = { 1, 10, 30, 15 };

Searching Element=1

Time complexity=O(1)

Three case efficient

we take all possible inputs and calculate computing
time for all of the inputs.

Average Case Analysis (Sometimes done)

Fundamentals of the analysis of algorithm efficiency /19CAT602 – DATA STRUCTURES & ALGORITHMS/N.Nandhini

AP/MCA
22/22

