SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
[YEAR - I SEM

UNIT 2 - C Programming Basics

TOPIC 8 - Decision Making and Branching

—

>

ﬁ—

LLTTITITIONS

INTRODUCTION ,
LLTTITITIONS

C program Is a set of statements which are normally executed sequentially in the order in
which they appear.

» This happens when no options or no repetitions of certain calculations are necessary.
» |n practice, we have a number of situations where we may have to change the order of
execution of statements based on certain conditions, or repeat a group of statements until

certain specified conditions are met.

» This involves a kind of decision making to see whether a particular condition has occurred or
not.

» Then direct the computer to execute certain statements accordingly.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 2/25

DECISION-MAKING STATEMENTS

T, /) SIITUTIONS
» C language possesses such decision-making capabilities by supporting the following
statements:

1. If statement
2. switch statement
3. Conditional operator statement

4. goto statement

» These statements are popularly known as decision-making statements.

» Since these statements ‘control’ the flow of execution, they are also known as
control statements.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 3/25

DECISION MAKING WITH IF STATEMENT

i LLTTITITIONS
> The If statement Is a powerful decision-making statement and is used to control the flow of
execution of statements.

» It is basically a two-way decision statement and Is used In conjunction with an expression.
» |t takes the following form
If (test expression)

» It allows the computer to evaluate the expression first.

» Then, depending on whether the value of the expression (relation or condition) 1s ‘true’ (or
non-zero) or ‘false’ (zero), it transfers the control to a particular statement.

» This point of program has two paths to follow, one for the true condition and the other for the
false condition as shown In Figure

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 4/25

DECISION MAKING WITH IF STATEMENT

LLTTTTITIONS

» Some examples of decision making, using If statements are:
1. iIf (bank balance is zero)
borrow money

2. If (room Is dark)
put on lights
3.1f (code 1s 1)
person Is male
4. 1f (age 1s more than 55)
person Is retired

Entry

test expression False

?

y True

Two-way branching

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 5/25

DIFFERENT FORMS OF ‘I1F° STATEMENT

The If statement may be implemented in different forms depending on the
complexity of conditions to be tested.

LLTTITITION S

» The different forms are:
1. Simple If statement
2. If.....else statement
3. Nested If....else statement
4. else If ladder.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 6/25

SIMPLE IF STATEMENT

» The general form of a simple If statement Is:

SITTITION S

If (test expression)

{
}

statement-X;

test

expression
?

True

statement-block:

statement-block ‘

statement - x i

|Next statement'l

Flow chart of simple if control

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 7/25

SIMPLE IF STATEMENT

» The ‘statement-block’ may be a single statement or a group of statements.
» |f the test expression Is true, the statement-block will be executed
» Otherwise (False) the statement-block will be skipped and the execution will jump to the
statement-X.

» Remember, when the condition i1s true both the statement-block and the statement-x are
executed In sequence. I

LLTTTTITIONS

#tinclude <stdio.h>

int main () { :fsc:t:::ition
/* local variable definition */ .
int a - 10; a 1s less than 20;

/* check the boolean condition using if statement */ II._,u"a]_l_,IE [::I'F d 15 . J_E] if condition
is false conditional code

if(a< 20) {

/* 1f condition 1s true then print the following */

printf(”a is less than 20\n"); -
¥

Y

printf(“value of a is : %¥d\n", a); @

return @;

¥

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 8/25

LLTTTTITIONS

» The general form is
If (test expression)

{

True-block statement(s)

}

else

{

False-block statement(s)
¥
statement-X;
» |f the test expression Is true, then the true-block statement(s), immediately following the if
statements are executed.
> |If the test expression Is False, the false-block statement(s) are executed.
» In either case, either true-block or false-block will be executed, not both.
» In both the cases, the control Is transferred subsequently to the statement-x.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 9/25

THE IF.....ELSE STATEMENT

rIrorions

// Check whether an integer 1s odd or even

Entry
#include <stdio.h>
int main() {
int number;
printf("Enter an integer: "); True test False

,, expression
scant("%d", &number);
// True 1f the remainder 1s 0

1T (number%2 == 0) { Y

printf("%d i1s an even integer.", number); True-block
} statement

Y

False-block

statement

else {
printf("%d 1s an odd integer.", number);

?
} > statement - x
return 0:
5

Flow chart of if......else control

Enter anmn integer : 7
7 o i1s an odd integer.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 10/25

NESTING OF IF....ELSE STATEMENTS

LLTTTTITIONS

if (test condition-1)

» When a series of decisions are involved, we may have to {

i : __if (test condition-2);
use more than one If...else statement In nested form : (test condition-2)

- statement -1;
> The logic of execution in Fig. ;SE
> If the condition-1 is false, the statement-3 will be executed:; \ statement -2, ——
» Otherwise It continues to perform the second test. }
» If the condition-2 Is true, the statement-1 will be evaluated else
» Otherwise the statement-2 will be evaluated. " statement -3:
» Then the control Is transferred to the statement-x. } l
statement -x; < Y

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 11/25

NESTING OF IF...ELSE STATEMENTS ~»

VSTIOIPNE;

0 Rt

B ¥ yinclude <stdio.h>

int main()

1

_ Output:
int varl, varl;
intf("Input the value of varl:"); False =t True
printf (" Inpu e value of vari:®); Input the value of varl:12 condition 1
scanf("%d", &varl); ?
: ., ., Input the wvalue of wvar2:21

printf("Input the value of var2:");

scanf("%d" ,&var2); varl is not equal to var2

if (varl != var2) var2 is greater than varl

[False test True

condition 2 ‘
printf("varl is not equal to var2\n"); ?
J/Nested 1f else
if (varl > var2)
{ Y v Y
printf("varl is greater than var2\n"); statement-3 statement-2 l statement-1
} { '
else ¥//”\\‘
1
printf("var2 is greater than varl\n");

} statement - x ‘

¥

else Y

{ Next Statement ‘
printf("varl is equal to var2\n");

1 Flow chart of nested if...else statements

return @,

¥

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 12/25

THE ELSE IF LADDER

LLTTTTITION S

» There Is another way of putting ifs together when multipath decisions are involved.
» A multipath decision is a chain of ifs in which the statement associated with each else is an If.

» It takes the following general form

if (condition 1)
statement=1; —

else if (condition 2)
statement-2; >

else if (condition 3)
statement-3; —

else if (condition n)
statement-n; -

else
default-statement;~

statement=x; <

» This construct Is known as the else If ladder.

» The conditions are evaluated from the top (of the ladder), downwards.

» As soon as a true condition is found, the statement associated with it Is executed and the control Is
transferred to the statement-x (skipping the rest of the ladder).

» When all the n conditions become false, then the final else containing the default-statement will be
executed.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 13/25

THE ELSE IF LADDER

#include <stdio.h=

int main{) {
int number1, number?:
printf("Enter two integers: ");
scanf("%d %d", &number1, &number2);

CondﬁonJu

Y

f/checks 1f the two integers are equal. ‘ﬂmnmeMA\

1T (number1 == number?2) {
printf("Result: %d

%d" , number1, number2)

y

//fchecks 1f number1 1s greater than number?2. ,

else 1T (number1l = number2) { |gmemmwal

printf("Result: %d = %d", number1, number2); | | U [Rondiuon=n2------
} " |
statement-n default
. : : - statement
//checks 1f both test expressions are false
else { Y
printf{"Result: %d < %d",number1, number2); (:)4
; {
statement - x |
return 0; ,
H next statement |
Enter two integers: 12
23 Flow chart of else..if ladder

Result: 12 < 23

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 14/25

RULES FOR INDENTATION

LLTTITITIONS

» When using control structures, a statement often controls many other statements that follow
It.

» In such situations It Is a good practice to use indentation to show that the indented
statements are dependent on the preceding controlling statement.

» Some guidelines that could be followed while using indentation are listed below:

Indent statements that are dependent on the previous statements; provide at least three
spaces of indentation.

Align vertically else clause with their matching If clause.

Use braces on separate lines to identify a block of statements.

Indent the statements in the block by at least three spaces to the right of the braces.
Align the opening and closing braces.

Use appropriate comments to signify the beginning and end of blocks.

Indent the nested statements as per the above rules.

Code only one clause or statement on each line.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 15/25

THE SWITCH STATEMENT

B LILTTITTITION S
> \We have seen that when one of the many alternatives is to be selected, we can use an If

statement to control the selection.

» However, the complexity of such a program increases dramatically when the number of
alternatives Increases.

» The program becomes difficult to read and follow.

» At times, It may confuse even the person who designed It.

» Fortunately, C has a built-in multiway decision statement known as a switch.

» The switch statement tests the value of a given variable (or expression) against a list of case
values and when a match is found, a block of statements associated with that case Is
executed.

» The general form of the switch statement is as discussed further.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 16/25

» General Form
switch (expression)

{
case value-1:
block-1
break;
case value-2: Case |
block-2
break: Case 2
...... Case 3
default: def;ult
default-block
break;
¥

statement-X;

12/12/2020

Code in Case 1
Block

Code in Case 2
Block

Code in Case 3
Block

Code in default

Block

THE SWITCH STATEMENT

Entry

switch
~_expression_-

‘ | Expression = value-1 | plockd

Expression = value-2

block?2

(no match) default | default
| block

Selection process of the switch statement

Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

FIrorion’s

statement-x |

17/25

THE SWITCH STATEMENT

LLTTTTITIONS

The expression Is an integer expression or characters. » General Form
» Value-1, value-2 are constants or constant expressions (evaluable to an integral constant) and are switch (expression)
known as case labels. {

» Each of these values should be unique within a switch statement. block-1, block-2 are statement

. . case value-1:
ISts and may contain zero or more statements.
» There Is no need to put braces around these blocks. block-1
> Note that case labels end with a colon (3). break;
» When the switch Is executed, the value of the expression is successfully compared against the values case value-2:
value-1, value-2,.... block-2
» If a case iIs found whose value matches with the value of the expression, then the block of statement break:
that follows the case are executed.
» The break statement at the end of each block signals the end of a particular case and causes an exit | "
from the switch statement, transferring the control to the statement-x following the switch. | =~
» The default is an optional case. default:
> When present, it will be executed if the value of the expression does not match with any of the case default-block
values. break;

» If not present, no action takes place if all matches fail and the control goes to the statement-x. 1

statement-X,;

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 18/25

THE SWITCH STATEMENT

#include <stdio.h>

> General Form f{”t main()
switch (expression) int i=2:
{ switch (i)
case value-1: {
block-1 case 1: Output:
break: printf("'Casel ");
case value-2: Caks’gegk; Case 2
block-2 printf("Case2 ";
break, break;
...... case 3:
______ printf(*'Case3 ");
default: brezk?
case 4:
Sefaﬁ!t block printf('Case4 ");
reax, break;
h default:
statement-X; printf(“Case not Found");
}
¥

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 19/25

RULES FOR SWITCH STATEMENT

LLTTITITION S

> The switch expression must be an integral type.

» Case labels must be constants or constant expressions.

» Case labels must be unigue. No two labels can have the same value.

» Case labels must end with colon.

» The break statement transfers the control out of the switch statement.

» The break statement Is optional. That is, two or more case labels may belong to the same
statements.

» The default label is optional. If present, it will be executed when the expression does not
find a matching case label.

» There can be at most one default label.

» The default may be placed anywhere but usually placed at the end.

» It Is permitted to nest switch statements.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 20/25

THE ? : OPERATOR

ne C language has an unusual operator, useful for making two-way decisions.
NiS operator Is a combination of ? and : , and takes three operands.
"his operator iIs popularly known as the conditional operator.
ne general form of use of the conditional operator is as follows:
conditional expression ? expressionl : expression2
The conditional expression is evaluated first.
If the result is non-zero, expressionl is evaluated and is returned as the value of the conditional
expression.
» Otherwise, expression2 is evaluated and its value Is returned.

()

Conditional or Ternary Operator (?:).in C/C++

LLTTITITIONS

YV VYV V

Y VY

Resultant Value

True l ‘

variable = Expression1 ? Expression2 :Expression3
A

False T

Resultant Value

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 21/25

THE 7?7 : OPERATOR

. s » Output 01:
Conditional Operators Example Enter the values of 2 and b
#include<stdio.h> 2
void main() 1 _ .
(Biggest value is 2
inta, b, X > Output 02:
printf("Enter the values of aadd b:"); gpierthe values of a and b
scanf("%d %d", &a, &b); 1
X=(a>b)?a:b; 2
printf("Biggest Value is :%d" x); Biggest valug Is 2

LTS rITU IO S

Flow Chart of
Conditional or Ternary Operator

False '= True

' part will get executed "7 part will get executed

Sl

Resultant Value of Expression

Variable

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 22/25

GUIDELINES FOR WRITING MULTIWAY SELECTION |
STATEMENTS TTSAIT U 15775

» Avoid compound negative statements.

» Use positive statements wherever possible.

» Keep logical expressions simple.

» Try to code the normal/anticipated condition first.

» Use the most probable condition first.

» This will eliminate unnecessary tests, thus improving the efficiency of the program.

» The choice between the nested if and switch statements is a matter of individual’s
preference.

» A good rule of thumb Is to use the switch when alternative paths are three to ten.

» Use proper indentations (See Rules for Indentation).

» Have the habit of using default clause in switch statements.

» Group the case labels that have similar actions.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 23/25

THE GOTO STATEMENT

LLTTITITION S

» So far we have discussed ways of controlling the flow of execution based on certain
specified conditions.

» Like many other languages, C supports the goto statement to branch unconditionally from
one point to another in the program.

» The goto requires a label in order to identify the place where the branch is to be made.

» A label Is any valid variable name, and must be followed by a colon.

» The label Is placed immediately before the statement where the control is to be transferred.

goto label; label: —
__________ statement;
label, <~——— |] --------
statement;
goto label;
Forward jump Backward jump

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 24/25

THE GOTO STATEMENT

#tinclude <stdio.h>

int main () {

/* local wvariable definition */ > OUtDUt @
int a = 10;
value of a: 1@
/* do loop execution */ Labell: | Statement 1
L00P: do | value of a: 11
value of a: 12 goto
if(a == 15) { Label2: | Statement 2 Label3
/* skip the iteration */ value ot 13
a=a+ 1;
’ value of a: 14
goto LOOP; Label3: | Statement 3
} value of a: 16
printf(“value of a: %d\n", a); value of » 17 @
T value of a: 18
lwhile(a < 20); value ot r 19
return @;

¥

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT 25/25

