
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - I SEM

UNIT 2 – C Programming Basics

TOPIC 8 – Decision Making and Branching

Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

22/25

INTRODUCTION

 C program is a set of statements which are normally executed sequentially in the order in

which they appear.

 This happens when no options or no repetitions of certain calculations are necessary.

 In practice, we have a number of situations where we may have to change the order of

execution of statements based on certain conditions, or repeat a group of statements until

certain specified conditions are met.

 This involves a kind of decision making to see whether a particular condition has occurred or

not.

 Then direct the computer to execute certain statements accordingly.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

33/25

DECISION-MAKING STATEMENTS

 C language possesses such decision-making capabilities by supporting the following

statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

 These statements are popularly known as decision-making statements.

 Since these statements ‘control’ the flow of execution, they are also known as

control statements.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

444/25

DECISION MAKING WITH IF STATEMENT

 The if statement is a powerful decision-making statement and is used to control the flow of

execution of statements.

 It is basically a two-way decision statement and is used in conjunction with an expression.

 It takes the following form

if (test expression)

 It allows the computer to evaluate the expression first.

 Then, depending on whether the value of the expression (relation or condition) is ‘true’ (or

non-zero) or ‘false’ (zero), it transfers the control to a particular statement.

 This point of program has two paths to follow, one for the true condition and the other for the

false condition as shown in Figure

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

5555/25

DECISION MAKING WITH IF STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 Some examples of decision making, using if statements are:

1. if (bank balance is zero)

borrow money

2. if (room is dark)

put on lights

3. if (code is 1)

person is male

4. if (age is more than 55)

person is retired

6666/25

DIFFERENT FORMS OF ‘IF’ STATEMENT

 The if statement may be implemented in different forms depending on the

complexity of conditions to be tested.

 The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement

4. else if ladder.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

77777/25

SIMPLE IF STATEMENT

 The general form of a simple if statement is:

if (test expression)

{

statement-block;

}

statement-x;

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

88888/25

SIMPLE IF STATEMENT

 The ‘statement-block’ may be a single statement or a group of statements.

 If the test expression is true, the statement-block will be executed

 Otherwise (False) the statement-block will be skipped and the execution will jump to the

statement-x.

 Remember, when the condition is true both the statement-block and the statement-x are

executed in sequence.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

99999/25

THE IF.....ELSE STATEMENT

 The if...else statement is an extension of the simple if statement.

 The general form is

If (test expression)

{

True-block statement(s)

}

else

{

False-block statement(s)

}

statement-x;

 If the test expression is true, then the true-block statement(s), immediately following the if

statements are executed.

 If the test expression is False, the false-block statement(s) are executed.

 In either case, either true-block or false-block will be executed, not both.

 In both the cases, the control is transferred subsequently to the statement-x.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

101010101010/25

THE IF.....ELSE STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

11111111111111/25

NESTING OF IF....ELSE STATEMENTS

 When a series of decisions are involved, we may have to

use more than one if...else statement in nested form

 The logic of execution in Fig.

 If the condition-1 is false, the statement-3 will be executed;

 Otherwise it continues to perform the second test.

 If the condition-2 is true, the statement-1 will be evaluated

 Otherwise the statement-2 will be evaluated.

 Then the control is transferred to the statement-x.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

12121212121212/25

NESTING OF IF....ELSE STATEMENTS

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

1313131313131313/2512/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

THE ELSE IF LADDER

 There is another way of putting ifs together when multipath decisions are involved.

 A multipath decision is a chain of ifs in which the statement associated with each else is an if.

 It takes the following general form

 This construct is known as the else if ladder.

 The conditions are evaluated from the top (of the ladder), downwards.

 As soon as a true condition is found, the statement associated with it is executed and the control is

transferred to the statement-x (skipping the rest of the ladder).

 When all the n conditions become false, then the final else containing the default-statement will be

executed.

141414141414141414/25

THE ELSE IF LADDER

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

151515151515151515/25

RULES FOR INDENTATION

 When using control structures, a statement often controls many other statements that follow

it.

 In such situations it is a good practice to use indentation to show that the indented

statements are dependent on the preceding controlling statement.

 Some guidelines that could be followed while using indentation are listed below:

• Indent statements that are dependent on the previous statements; provide at least three

spaces of indentation.

• Align vertically else clause with their matching if clause.

• Use braces on separate lines to identify a block of statements.

• Indent the statements in the block by at least three spaces to the right of the braces.

• Align the opening and closing braces.

• Use appropriate comments to signify the beginning and end of blocks.

• Indent the nested statements as per the above rules.

• Code only one clause or statement on each line.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

16161616161616161616/25

THE SWITCH STATEMENT

 We have seen that when one of the many alternatives is to be selected, we can use an if

statement to control the selection.

 However, the complexity of such a program increases dramatically when the number of

alternatives increases.

 The program becomes difficult to read and follow.

 At times, it may confuse even the person who designed it.

 Fortunately, C has a built-in multiway decision statement known as a switch.

 The switch statement tests the value of a given variable (or expression) against a list of case

values and when a match is found, a block of statements associated with that case is

executed.

 The general form of the switch statement is as discussed further.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

17171717171717171717/25

THE SWITCH STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 General Form

switch (expression)

{

case value-1:

block-1

break;

case value-2:

block-2

break;

......

......

default:

default-block

break;

}

statement-x;

18181818181818181818/25

THE SWITCH STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 The expression is an integer expression or characters.

 Value-1, value-2 are constants or constant expressions (evaluable to an integral constant) and are

known as case labels.

 Each of these values should be unique within a switch statement. block-1, block-2 are statement

lists and may contain zero or more statements.

 There is no need to put braces around these blocks.

 Note that case labels end with a colon (:).

 When the switch is executed, the value of the expression is successfully compared against the values

value-1, value-2,....

 If a case is found whose value matches with the value of the expression, then the block of statements

that follows the case are executed.

 The break statement at the end of each block signals the end of a particular case and causes an exit

from the switch statement, transferring the control to the statement-x following the switch.

 The default is an optional case.

 When present, it will be executed if the value of the expression does not match with any of the case

values.

 If not present, no action takes place if all matches fail and the control goes to the statement-x.

 General Form

switch (expression)

{

case value-1:

block-1

break;

case value-2:

block-2

break;

......

......

default:

default-block

break;

}

statement-x;

19191919191919191919/25

THE SWITCH STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

#include <stdio.h>

int main()

{

int i=2;

switch (i)

{

case 1:

printf("Case1 ");

break;

case 2:

printf("Case2 ");

break;

case 3:

printf("Case3 ");

break;

case 4:

printf("Case4 ");

break;

default:

printf(“Case not Found");

}

}

Output:

Case 2

 General Form

switch (expression)

{

case value-1:

block-1

break;

case value-2:

block-2

break;

......

......

default:

default-block

break;

}

statement-x;

20202020202020202020/25

RULES FOR SWITCH STATEMENT

 The switch expression must be an integral type.

 Case labels must be constants or constant expressions.

 Case labels must be unique. No two labels can have the same value.

 Case labels must end with colon.

 The break statement transfers the control out of the switch statement.

 The break statement is optional. That is, two or more case labels may belong to the same

statements.

 The default label is optional. If present, it will be executed when the expression does not

find a matching case label.

 There can be at most one default label.

 The default may be placed anywhere but usually placed at the end.

 It is permitted to nest switch statements.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

2121212121212121212121/25

THE ? : OPERATOR

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 The C language has an unusual operator, useful for making two-way decisions.

 This operator is a combination of ? and : , and takes three operands.

 This operator is popularly known as the conditional operator.

 The general form of use of the conditional operator is as follows:

conditional expression ? expression1 : expression2

 The conditional expression is evaluated first.

 If the result is non-zero, expression1 is evaluated and is returned as the value of the conditional

expression.

 Otherwise, expression2 is evaluated and its value is returned.

2222222222222222222222/25

THE ? : OPERATOR

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 Output 02:

Enter the values of a and b

1

2

Biggest value is 2

 Output 01:

Enter the values of a and b

2

1

Biggest value is 2

2323232323232323232323/25

GUIDELINES FOR WRITING MULTIWAY SELECTION

STATEMENTS

 Avoid compound negative statements.

 Use positive statements wherever possible.

 Keep logical expressions simple.

 Try to code the normal/anticipated condition first.

 Use the most probable condition first.

 This will eliminate unnecessary tests, thus improving the efficiency of the program.

 The choice between the nested if and switch statements is a matter of individual’s

preference.

 A good rule of thumb is to use the switch when alternative paths are three to ten.

 Use proper indentations (See Rules for Indentation).

 Have the habit of using default clause in switch statements.

 Group the case labels that have similar actions.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

2424242424242424242424/25

THE GOTO STATEMENT

 So far we have discussed ways of controlling the flow of execution based on certain

specified conditions.

 Like many other languages, C supports the goto statement to branch unconditionally from

one point to another in the program.

 The goto requires a label in order to identify the place where the branch is to be made.

 A label is any valid variable name, and must be followed by a colon.

 The label is placed immediately before the statement where the control is to be transferred.

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

2525252525252525252525/25

THE GOTO STATEMENT

12/12/2020 Decision Making and Branching / Prog. For Prob.Solving / Gopalakrishnan.S/MCA/SNSCT

 Output

