
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

19ECB211 – MICROCONTROLLER PROGRAMMING & INTERFACING

II YEAR IV SEM

UNIT I – PIC MICROCONTROLLER : HISTORY , FEATURES & ARCHITECTURE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

TOPIC 5– Use of Instructions with the Default Access Bank

File Register & Access Bank in PIC

There is a limitation in the instructions that the PIC uses to address

iRAM locations (basically all of the instructions which have an “f” in

them).

Byte-oriented instructions which address the registers are in the

format of –

File Register & Access Bank in PIC

Byte-oriented instructions which address the registers are in the

format of –

Use of Instructions in Access Bank of PIC

The opcode is the instruction itself.

 In the first table, DST is the destination bit that tells the PIC

whether to store the result in W (0) or in the file register (1) who’s

address is in bits AD0-AD6.

In the second table, the 4 MSBs are the instruction, the 3 “BIT” bits

are the bit that the instruction will be executed on (0-7), while AD0-

AD6 are the address in the file where the bit to be manipulated

resides.

Use of Instructions in Access Bank of PIC

Basically, instructions which directly address the iRAM register

locations can only provide 7 of the address bits.

 Since 7 bits can only count to 0x7F (decimal 127), this limits the

instruction itself to only access 128 RAM locations on its own…hence

the limitation.

So how can we overcome the limitation so that we can

address the entire iRAM space?

With the addition of two more bits of course, but where would they come

from?

the STATUS register!

It is referred to as the “bank select” bits but this is just a convention that

Microchip decided to use for its “register banking” concept.

 Bits RP1 and RP0 (Register Page 1 and Register Page 0 respectively)

serve as the upper 2 address bits for instructions which directly address

the iRAM locations.

Use of Instructions in Access Bank of PIC

 For instance we wanted to move a value in W to register TRISA, which

has iRAM address 0x85 (b’010000101).

The instruction could not supply the leading “01” in the address, so these

two bits must come from register bits RP0 and RP1.

So prior to writing the contents of W to register TRISA, we must first

execute these two instructions –

bsf STATUS,RP0

bcf STATUS,RP1

Use of Instructions in Access Bank of PIC

With a more conventional processor like the Intel 8051, a mov

instruction is 8 bits long, followed by 1 or 2 more bytes that provide the

address(es) that the mov instruction is being executed on.

With an instruction set of this nature, no iRAM ‘banking’ is required.

If we were to use the FSR to indirectly address register TRISA, we could

simply load the FSR with the value of 0x85, load W with the immediate

value to write to TRISA, then load the value in W into the INDF register

without having to bank select

Use of Instructions in Access Bank of PIC

This is because register FSR is an 8 bit register and can supply 8 of the 9

address bits on its own.

However, we must ensure that bit IRP in the STATUS register is clear

prior to doing this otherwise we would end up writing to iRAM register

address 0x185 instead of 0x085.

References

https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/

https://en.wikipedia.org/wiki/Embedded_system

https://www.electronicspecifier.com/products/design-automation/embedded-systems-the-evolution-of-embedded-

system-design

Mazidi M. A., McKinlay R. D., Causey D. “PIC Microcontroller And Embedded Systems” Pearson Education

International, 2008(Unit I,II,III, IV & V)

https://www.embedded.com/the-evolution-of-embedded-devices-addressing-complex-design-challenges/
https://en.wikipedia.org/wiki/Embedded_system
https://www.electronicspecifier.com/products/design-automation/embedded-systems-the-evolution-of-embedded-system-design

