
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

19ECT312 – EMBEDDED SYSTEM DESIGN

III YEAR/ VI SEMESTER

 UNIT 3 : PROGRAMMING CONCEPTS AND EMBEDDED

PROGRAMMING IN C++

 TOPIC 3.5 C++ PROGRAM COMPILERS

1

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 2/43

C++ PROGRAM COMPILERS

 The process of converting the source code representation of
your embedded software into an executable binary image involves
three distinct steps:

1. Each of the source files must be compiled or assembled into

an object file.

2. All of the object files that result from the first step must be linked
together to produce a single object file, called the relocatable
program.

3. Physical memory addresses must be assigned to the relative offsets
within the relocatable program in a process called relocation.

The Build Process

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 3/43

C++ PROGRAM COMPILERS

 The result of the final step is a file containing an executable binary
image that is ready to run on the embedded system.
 The embedded software development process just described is
illustrated in figure,

the three steps are shown from top to bottom, with the tools that perform

the steps shown in boxes that have rounded corners.

1. Each of these development tools takes one or more files as input and

produces a single output file.

2. More specific information about these tools and the files they produce

is provided in the sections that follow.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 4/43

C++ PROGRAM COMPILERS

The embedded software development process

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 5/43

C++ PROGRAM COMPILERS

1. Each of the steps of the embedded software build process is a

transformation performed by software running on a general-purpose

computer.

2. To distinguish this development computer (usually a PC or Unix

workstation) from the target embedded system, it is referred to as the host

computer.

3. The compiler, assembler, linker, and locator run on a host computer rather

than on the embedded system itself.

4. Yet, these tools combine their efforts to produce an executable binary

image that will execute properly only on the target embedded system

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 6/43

C++ PROGRAM COMPILERS

The split between host and target

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 7/43

C++ PROGRAM COMPILERS

Compiling

 The job of a compiler is mainly to translate programs written in some human-

readable language into an equivalent set of opcodes for a particular processor.

 In that sense, an assembler is also a compiler (you might call it an “assembly

language compiler”), but one that performs a much simpler one-to-one translation from

one line of human-readable mnemonics to the equivalent opcode.

Everything in this section applies equally to compilers and assemblers. Together these

tools make up the first step of the embedded software build process.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 8/43

C++ PROGRAM cross
COMPILERS

each processor has its own unique machine language, so you need to choose a

compiler that produces programs for your specific target processor.

In the embedded systems case, this compiler almost always runs on the host

computer.

It simply doesn’t make sense to execute the compiler on the embedded system

itself.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 9/43

C++ PROGRAM COMPILERS

The GNU C compiler (gcc) and assembler (as) can be configured as either native

compilers or cross-compilers.

These tools support an impressive set of host-target combinations.

The gcc compiler will run on all common PC and Mac operating systems.

The target processor support is extensive, including AVR, Intel x86, MIPS,

PowerPC, ARM, and SPARC.

Additional information about gcc can be found online at http://gcc.gnu.org.

http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 10/43

C++ PROGRAM COMPILERS

Regardless of the input language (C, C++, assembly, or any other), the output

of the cross-compiler will be an object file.

This is a specially formatted binary file that contains the set of instructions

and data resulting from the language translation process.

Although parts of this file contain executable code, the object file cannot be

executed directly.

In fact, the internal structure of an object file emphasizes the incompleteness

of the larger program.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 11/43

C++ PROGRAM COMPILERS

The contents of an object file can be thought of as a very large, flexible data structure.

The structure of the file is often defined by a standard format such as the Common
Object File Format (COFF) or Executable and Linkable Format (ELF).

If you’ll be using more than one compiler (i.e., you’ll be writing parts of your program in
different source languages), you need to make sure that each compiler is capable of
producing object files in the same format; gcc supports both of the file formats
previously mentioned.

Although many compilers (particularly those that run on Unix platforms) support
standard object file formats such as COFF and ELF, some others produce object files only
in proprietary formats.

If you’re using one of the compilers in the latter group, you might find that you need to
get all of your other development tools from the same vendor.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 12/43

C++ PROGRAM COMPILERS

•Most object files begin with a header that describes the sections that follow.

•Each of these sections contains one or more blocks of code or data that originated within

the source file you created.

•However, the compiler has regrouped these blocks into related sections. For example,

in gcc all of the code blocks are collected into a section called text, initialized global

variables (and their initial values) into a section called data, and uninitialized global

variables into a section called bss.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 13/43

C++ PROGRAM COMPILERS

•There is also usually a symbol table somewhere in the object file that

contains the names and locations of all the variables and functions

referenced within the source file.

•Parts of this table may be incomplete, however, because not all of the

variables and functions are always defined in the same file.

•These are the symbols that refer to variables and functions defined in other

source files.

•And it is up to the linker to resolve such unresolved references.

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 14/43

C++ PROGRAM COMPILERS

Compile

As we have implemented it, the Blinking LED example consists of two source modules:

1. led.c

2. blink.c.

The first step in the build process is to compile these two files.

The basic structure for the gcc compiler command is:

arm-elf-gcc [

 options

]

 file ...

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 15/43

C++ PROGRAM COMPILERS

The command-line options we’ll need are:

-g

 To generate debugging info in default format

-c

 To compile and assemble but not link

-Wall

 To enable most warning messages

-I../include

 To look in the directory include for header files

Here are the actual commands for compiling the C source files:

arm-elf-gcc –g -c –Wall -I../include led.c

 # arm-elf-gcc -g –c -Wall -I../include blink.c

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 16/43

C++ PROGRAM COMPILERS

 We broke up the compilation step into two separate commands, but you

can compile the two files with one command.

 To use a single command, just put both of the source files after the

options.

 If you wanted different options for one of the source files, you would

need to compile it separately as just shown.

 For additional information about compiler options, take a look

at http://gcc.gnu.org.

http://gcc.gnu.org/

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 17/43

C++ PROGRAM COMPILERS

 Running these commands will be a good way to verify that the tools were

set up properly.

 The result of each of these commands is the creation of an object file that

has the same prefix as the .c file, and the extension .o.

 So if all goes well, there will now be two additional files—led.o and blink.o—

in the working directory. The compilation procedure is shown in Figure

Compiling the Blinking LED
program

https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html

2/20/2023 19ECT312/Emb.Sys / Dr.Swamynathan.S.M/AP/ECE/SNSCT 18/43

 Shoot!

Any Questions /
Thank you

 A compiler such as this—that runs on one
computer platform and produces code for
another—is called a cross-compiler.

(Next Class)

The use of a cross-compiler is one of the defining

features of embedded software development.

