
A Condensed

Crash Course on C++

ECE 417/617:

Elements of Software Engineering

Stan Birchfield

Clemson University

Recommended C++ resources

• Bjarne Stroustrup,
The C++ Programming
Language

• Scott Meyers,
Effective C++

Why C++?

• Popular and relevant (used in nearly every application domain):

– end-user applications (Word, Excel, PowerPoint, Photoshop, Acrobat,

Quicken, games)

– operating systems (Windows 9x, NT, XP; IBM’s K42; some Apple OS X)

– large-scale web servers/apps (Amazon, Google)

– central database control (Israel’s census bureau; Amadeus; Morgan-

Stanley financial modeling)

– communications (Alcatel; Nokia; 800 telephone numbers; major

transmission nodes in Germany and France)

– numerical computation / graphics (Maya)

– device drivers under real-time constraints

• Stable, compatible, scalable

C vs. C++

• C++ is C incremented
(orig., “C with classes”)

• C++ is more expressive
(fewer C++ source lines needed than C source lines for same program)

• C++ is just as permissive
(anything you can do in C can also be done in C++)

• C++ can be just as efficient
(most C++ expressions need no run-time support;
 C++ allows you to
– manipulate bits directly and interface with hardware without regard for safety

or ease of comprehension, BUT

– hide these details behind a safe, clean, elegant interface)

• C++ is more maintainable
(1000 lines of code – even brute force, spaghetti code will work;
 100,000 lines of code – need good structure, or new errors will be
 introduced as quickly as old errors are removed)

Efficiency and Maintainability

90/10 rule: 10% of your program will take 90% of the
processor time to run

optimize what needs to be optimized, but no more

 focus on design

Design goals of C++

• Backward compatibility with C
(almost completely – every program in K&R is a C++ program –
but additional keywords can cause problems)

• Simplicity, elegance
(few built-in data types, e.g., no matrices)

• Support for user-defined data types
(act like built-in types; N.B. Standard Template Library (STL))

• No compromise in efficiency, run-time or memory
(unless “advanced features” used)

• Compilation analysis to prevent accidental corruption
of data
(type-checking and data hiding)

• Support object-oriented style of programming

Compatibility with C

C++ does not allow

• old-style C function declarations
void f(a) int a; {}

• generic function declarations
void f();
void g() { f(2); }

• setting enum to int
enum Dir {Up, Down};
Dir d=1;

• multiple declarations
int i; int i;

• assigning to void *
int* p = malloc(10);

• “implicit int”
signed a = 7;

Other differences:

• const global variables have
internal linkage in C++,
external in C

• extra keywords in C++
void main()
{ int catch = 5; }

• bizarre comments
int f(int a, int b)
{
 return a//**/b
;
}

How is C++ not backward compatible with C (C89)?

(For these, C++ is backward

compatible with C99)

Purpose of a programming

language

• Programming languages serve two

purposes:

– vehicle for specifying actions to be executed

“close to the machine”

– set of concepts for thinking about what can

be done

“close to the problem being solved”

• Object-oriented C++ excels at both

Learning C++

• Goal: Don’t just learn new syntax, but become a
better programmer and designer; learn new and
better ways of building systems

• Be willing to learn C++’s style; don’t force
another style into it

• C++ supports gradual learning
– Use what you know

– As you learn new features and techniques, add those
tools to your toolbox

• C++ supports variety of programming paradigms

Programming paradigms

• procedural – implement algorithms via
functions (variables, functions, etc.)

• modular – partition program into modules
(separate compilation)

• object-oriented – divide problem into classes
(data hiding, inheritance)

• abstract – separate interface from
implementation (abstract classes)

• generic – manipulate arbitrary data types
(STL: containers, algorithms)

• Encapsulation

“black box” – internal data hidden

• Inheritance

related classes share implementation

 and/or interface

• Polymorphism

ability to use a class without knowing its type

What is object-oriented?

© SDC

“C++ is an object-oriented language” =

C++ provides mechanisms that support object-oriented style of programming

Some C++ concepts

• constructor / destructor / copy constructor

• initialization list

• inheritance

• exceptions

• overloading operators (e.g., assignment operator)

• namespace

• const

• virtual function

• pure virtual (abstract) function

• friend

• template

• standard template library (STL)

• pass by value, pass by reference

• composition versus derivation

A simple C++ program

#include <iostream> // std::cout

#include <cstdio> // printf

int main()

{

 int a = 5; // 'a' is L-value

 float b = 0.9f;

 printf("Hello world %d %3.1f \n", a, b);

 std::cout << "Hello world" << a << " "

 << b << " " << std::endl;

 return 0;

}

Declarations and definitions

• Declaration:
– extern char c;

– struct User;

– double sqrt(double);

 Okay to have many

• Definition:
– char c;

– int count = 1;

– double abs(double a) {

 a>0 ? a : -a;

}

 Must have exactly one

Fundamental types

• bool (true 1, false 0)

• char (could be signed or unsigned
– implementation-defined)

• int (signed by default)

• double

• void (“pseudo-type”)

• enum

• class

• also short, long, struct, float,
wchar_t, etc.)

Do not rely on sizes of these!

(Implementation-dependent)

INTEGRAL

ARITHMETIC

USER-DEFINED

Macros

• Dangerous:
– compiler never sees them

source code translation unit

– global

• Instead, use
– const

– inline

– template

– enum

• Ok to use for include guards (“header wrappers”)

• If you must use a macro, give it a long ugly name with
lots of capital letters

Example:

template<typename T>

inline T max(T t){

 t>0 ? t : -t;

}

Memory allocation

• “on the stack”

– block delimited by {}

– object alive till it falls out of scope

– calls constructor / destructor

• “on the heap”

– new and delete replace malloc, calloc, free

– object exists independently of scope in which it was created

– also “on the free store” or “allocated in dynamic memory”

– be careful: new delete, new[] delete[]

– for safety, same object should both allocate and deallocate

• “local static store”
void foo() {

 static int i=0;

}

Global variables

• Built-in types initialized to 0

(but local variables uninitialized)

• Initialized before main() invoked

• Initialization order:

– within translation unit, same as definition

– between translation units, arbitrary order

file1.cpp

double pi = 3.14;

file2.cpp

double twopi = 2*pi;

Bad!

No guarantee that twopi

will be initialized correctly

 A class

class Date {

public:

 enum Month {Jan, Feb, Mar, ...}

 Date(int year, Month month, int day);

 int GetDay() const;

 void SetDay(int day);

 Date& operator+=(int days);

private:

 Month m_month;

 int m_year, m_day;

};

member

functions

(methods)

member

variables

Struct vs. class

• In C++, no difference b/w struct and class
(except default public vs. private)

• In C++, struct can have

– member variables

– methods

– public, private, and protected

– virtual functions

– etc.

• Rule of thumb:

– Use struct when member variables are public (just a container)

– Use class otherwise

OO in C

• In C, a struct can have

both member variables

and methods:

• In C++, syntax is

simpler:

void CreateFoo()

{

}

struct Foo

{

 void (*Construct)();

 int m_data;

};

int main()

{

 struct Foo a;

 a.Construct = &CreateFoo;

 a.Construct();

}

struct Foo

{

 Foo()

 int m_data;

};

Foo::Foo()

{

}

int main()

{

 Foo a;

}

Names

• Maintain consistent naming style

– long names for large scope

– short names for small scope

• Don’t start with underscore; reserved for

special facilities

• Avoid similar-looking names: l and 1

• Choosing good names is an art

Access control

• Public: visible to everyone

• Private: visible only to the implementer of
this particular class

• Protected: visible to this class and derived
classes

• Good rule of thumb:
– member functions (methods):

• if non-virtual, then public or protected

• if virtual, then private

– member variables should be private
(except in the case of a struct)

The big four

• By default, each class has four methods:
– constructor Date();

– destructor ~Date();

– copy constructor
Date(const Date& other);

– assignment operator
Date& operator=(const Date& other);

• These call the appropriate functions on each
member variable

• Be careful: If this is not what you want, then
either override or disallow (by making private)

Constructor and destructor

• (Copy) constructor creates object

• Destructor destroys (“cleans up”) object

• Be aware of temporary objects
class Matrix {

 Matrix(const Matrix& other);

 Matrix operator+(const Matrix& other) const;

 Matrix& operator=(const Matrix& other);

};

void foo() {

 Matrix a, b, c, d;

 a = b + c + d;

}

What functions get called?

(Note: There are ways to speed this up while preserving the syntax)

Example

Suppose we have a simple class.

class A {

public:

 A() { printf("con\n"); }

 A(const A& other) { printf("copycon\n"); }

 ~A() { printf("des\n"); }

 A& operator=(const A& other) { printf("assign\n");

 return *this;

 }

};

Example 1

What is the output of the following program?

01 {

02 A a;

03 A* b = new A();

04 *b = a;

05 delete b;

06 A c = a;

07 }

02 con

03 con

04 assign

05 des

06 copycon

07 des

07 des

Example 2

What is the output of the following program?

01 void F(const A& f, A* g, A h)

02 {

03 *g = f;

04 }

05 {

06 A a, b;

07 F(a, &b, a);

08 }

06 con

06 con

01 copycon

03 assign

04 des

08 des

08 des

Example 3

What is the output of the following program?

01 A F()

02 {

03 A tmp;

04 return tmp;

05 }

06 {

07 A a = F();

08 }

(VC++ 6.0 -- Windows)

03 con

07 copycon

05 des

08 des

(g++ 3.4.3 -- Linux)

07 con

08 des

Avoid new and delete

• Whenever possible, avoid ‘new’ and ‘delete’

• Instead create object on stack

• Automatic destructor makes things easier

• No need to worry about forgetting to delete the
object (memory leak) or deleting the wrong
object (crash)

• If you must use ‘new’, then try to keep the
‘delete’ nearby

• This helps code maintenance – otherwise it is
hard to keep track of the new/delete pairs

When to use new and delete

• Sometimes you have to use new and

delete

• And sometimes the pair cannot be close

together

• Oh well

• The next slide shows an example where

we need to break both of these rules

An example of new/delete
• You have a base class:

class Command { virtual DoSomething(); };

• You have several derived classes:
class CommandAdd : public Command {};
class CommandMove : public Command {};
class CommandSet : public Command {};

• You have a list of objects whose types are unknown at compile
time (polymorphism):
std::vector<Command*> undo_list;

• Must put pointers in list – not actual objects – because the objects
may be of different sizes (among other reasons)

• Someone creates the object and puts its pointer on the list:
undo_list.push_back(new CommandAdd());

• Later the object is removed from the list and deleted:
Command* com = undo_list.back();
undo_list.pop();
com->DoSomething(); // call a virtual method
delete com;

Initializer lists

Matrix::Matrix(const Matrix& other)

 : m_n(0), m_a(0)

{

}

Matrix::Matrix(const Matrix& other)

{

 m_n = 0;

 m_a = 0;

}

Use initializer list:

Assign values inside constructor:

Concrete classes

• A concrete class
– does a single, relatively small thing well and

efficiently

– hides data members (encapsulation)

– provides clean interface

– acts like a built-in type

– is a “foundation of elegant programming” –
Stroustrup

• Don’t underestimate the importance of this
basic C++/OO feature!

Class relationships

• OK:

– A calls function from B

– A creates B

– A has a data member of type B

• Bad:

– A uses data directly from B

(without using B’s interface)

• Even worse:

– A directly manipulates data in B

Pointers, arrays, references

• Use 0, not NULL (stronger type checking)

• Name of array is equivalent to pointer to
initial element

• Access array using * or []; same

efficiency with modern compiler

• use std::vector, not built-in array,

when possible

• Reference is like a pointer

References

• Reference: alternate

name for an object (alias)

• There is no

null reference

• No reference to

a temporary

• Syntax confusing

• Basically a const

dereferenced pointer

with no operations

int &a;

int* c = &a;

int& a = 1;

“get address of”

(not a reference)

int b; int &a = b;

(Now use ‘a’ as ‘b’)

Confusing syntax

int a, b;

int c = a * b;

int* d = &a;

int e = *d;

int& f = a;

* means

• multiplication, or

• pointer, or

• dereference pointer

& means

• get address of, or

• reference

Same symbol, different meanings!

Pass by X

void f(int a, int* b, int& c)

{

 // changes to a are NOT reflected outside the function

 // changes to b and c ARE reflected outside the function

}

main()

{

 int a, b, c;

 f(a, &b, c);

}

pass

by

value

pass

by

pointer
pass

by

reference

DOES

make a copy

does NOT

make a copy

PBP and PBR are different syntax for the same functionality

Argument passing / return

• Pass / return by value
– calls copy constructor

– ok for built-in types
int foo(int a) { return 0; }

– performance penalty for structs and classes (temporary objects)

• Pass / return by reference or pointer
– does not call copy constructor

– pass inputs by const reference

– never pass inputs by “plain” reference
void update(int& a); update(2); // error

– pass outputs by pointer
int x = 1; next(x); // should not change x
int x = 1; next(&x); // may change x

– ok to return a ref, or const ref

C++ function mechanisms

• Overloaded function names
– Cleaner and safer

print(int);
print(float);

– But beware
print(int); print(int*); print(0);

• Default parameters
void print(int a, int b=0, int c=0);

• Operator overloading
Matrix& operator+=(const Matrix& other);

• Implicit conversion operator
operator int() const {} // converts to int

– Provides convenient syntax, but potentially dangerous so use
sparingly

Opaque pointers

• An opaque pointer is used to hide the internal
implementation of a datatype

• Also called Pimpl (pointer to implementation) idiom, or
Cheshire Cat

• Example: The d-pointer is the only private data
member of the class and points to an instance of a
struct defined in the class' implementation file

http://en.wikipedia.org/wiki/Opaque_pointer

Explicit type conversion

• C++ casts
– static_cast between 2 related types

(int/float, int/enum, 2 pointers in class hierarchy)

– reinterpret_cast between 2 unrelated types
(int/ptr, pointers to 2 unrelated classes)

– const_cast cast away constness

– dynamic_cast used for polymorphic types
Run-time type info (RTTI)

• Avoid casts, but use these instead of C casts
– e.g., compiler can perform minimal checking for
static_cast, none for reinterpret_cast

Namespaces

• Namespace expresses logical grouping

• using declaration
– Don’t use global using except for transition to

older code

– Ok in namespace for composition

– Ok in function for notational convenience

• Namespaces are open

• Unnamed namespaces restrict code to local
translation unit

• Aliases (namespace ShortName = LongName;)

Const

• Const prevents object from being modified (orig., readonly)

• Avoid magic numbers
char a[128];
const int maxn = 128;
char a[maxn];

• Logical constness vs. physical constness

• Const is your friend; use it extensively and consistently

• can cast away constness, but be sure to use mutable

• const pointers:
– const int * const ptr = &a[0]; // const ptr to a const int

– int const * const ptr = &a[0]; // ”

– int * const p2 = &a[0]; // const ptr to an int

– const int * p1 = &a[0]; // ptr to a const int

– int const * p2 = &a[0]; // ”

Assert macro

• Assert allows the programmer to explicitly type assumptions about
expected inputs and values

• Use assert generously; it is your friend

• Assert helps to catch bugs early during development

• Assert is removed by precompiler before final release, so no run-
time penalty

• Use assert only to check values; do not change values!!!

#include <assert.h>

int GetValue(int index)

{

 assert(index >= 0 && index < array.size());

 if (index < 0 || index >= array.size())

 return -1; // value should make sense

 return array[index];

}

If performance is not a concern,

then it is okay to augment (but

not to replace) assert with an

extra check that will remain in

the final version.

Inheritance

• Subclass derived from base class

• Two classes should pass the “ISA” test:

derived class is a base class

class Shape {

};

class Circle : public Shape {

};

• Class hierarchy: means of building classes

incrementally, using building blocks

(subclass becomes base class for someone else)

• Facilitates code reuse

Inheritance vs. composition

• Inheritance: “is a”

class Circle : public Shape {
};

• Composition: “has a”

class Circle {
private:
 Shape m_shape;
};

• Decision should be based on commonality of
interface

Virtual functions

• Function of derived class is called even if

you have only a pointer to the base class

File.h

class Shape

{

 virtual void Draw();

};

class Circle : public Shape

{

 virtual void Draw();

};

File.cpp

void Func1()

{

 Circle mycirc;

 Func2(&mycirc);

}

void Func2(Shape* s)

{

 s->Draw();

}

// calls Circle::Draw()

How a virtual function works

Shape vtable

vfunc1 addr

vfunc2 addr

...

vfuncN addr

vfunc1 addr

vfunc2 addr

...

vfuncN addr

Circle vtable

var1

...

varM

vtable ptr

mycirc

var1

... varN

shape member

variables

circle member

variables

{
{

What is the penalty of a virtual

function?

• Space:

– one vtable per class with virtual function(s)

– one pointer per instance

• Time:

– one extra dereference if type not known at

compile time

– no penalty if type known at compile time

(ok to inline a virtual function)

Pure virtual function

• Pure virtual function
– Function intentionally undefined

– Same penalty as regular virtual function

• Abstract class

– Contains at least one pure virtual function

– Cannot instantiate; must derive from base class and override pure virtual
function

– Provides an interface
(separates interface from implementation)

• Advice: virtual functions should always be pure virtual
– i.e., “Make non-leaf classes abstract” (Scott Meyers, Item 29)

– Also, “Don’t derive from concrete classes” (Herb Sutter, p. 137)

• More advice: Make virtual functions private (Herb Sutter, p. 134). This
separates the override implementation details from the public interface.

class Shape {

 virtual void Draw() = 0;

};

Multiple inheritance

• C++ allows you to inherit from multiple

base classes

• Works best if

– exactly one base class passes ISA test

– all other base classes are interfaces

• Advanced feature that is rarely needed

 class MyDialog :
 public CDialog, Observer {};

MyDialog is a CDialog
MyDialog needs a single method

from Observer (lightweight class)

(see MVC architecture)

Polymorphism

• Polymorphism

– “ability to assume different forms”

– one object acts like many different types of objects

(e.g., Shape*)

– getting the right behavior without knowing the type

– manipulate objects with a common set of operations

• Two types:

– Run-time (Virtual functions)

– Compile-time (Templates)

Exceptions

• Error handling in C:

– Half of code is error handling

– Dangerous: Easy for programmer to forget

to check return value

void Func() {

 int ret;

 ret = OpenDevice();

 if (ret != 0) error(“Unable to open device”);

 ret = SetParams();

 if (ret != 0) error(“Unable to set params”);

}

Exceptions (cont.)

• Error handling in C++:

– try-catch blocks safer

– separate “real code” from error handling code

void Func() {

 try {

 OpenDevice();

 SetParams();

 } catch (const MyException& e) {

 e.ReportToUser();

 } catch (...) {

 abort(1);

 }

}

void OpenDevice()

{

 if (bad) throw MyException(“Cannot open device”);

}

Templates

• Define a class or function once, to work with a variety
of types

• Types may not be known until future

• Better type checking and faster (cf. qsort)

• Specialization can be used to reduce code bloat

• Templates support generic programming

template<typename T>

T Max(T a, T b) { return a>b ? a : b; }

template<typename T>

class Vector {

 Vector(int n, T init_val);

 T* m_vals;

};

Generic programming

• Drawbacks of qsort in <stdlib.h>

– requires a compare function, even if trivial

– loss of efficiency b/c dereferencing pointer

– lost type safety b/c void*

– only works with contiguous arrays

– no control over construction / destruction /

assignment; all swapping done by raw

memory moves

Standard Template Library (STL)

• Containers:
– Sequences

• vector – array in contiguous memory (replaces realloc)

• list – doubly-linked list (insert/delete fast)

• deque (“deck”) – double-ended queue

• stack, queue, priority queue

– Associative
• map – dictionary; balanced tree of (key,value) pairs

 like array with non-integer indices

• set – map with values ignored (only keys important)

• multimap, multiset (allow duplicate keys)

– Other
• string, basic_string – not necessarily contiguous

• valarray – vector for numeric computation

• bitset – set of N bits

STL (cont.)

• Algorithms (60 of them):

– Nonmodifying

• find, search, mismatch, count, for_each

– Modifying

• copy, transform/apply, replace, remove

– Others

• unique, reverse, random_shuffle

• sort, merge, partition

• set_union, set_intersection, set_difference

• min, max, min_element, max_element

• next_permutation, prev_permutation

std::string

• Example:

#include <string>

void Func()

{

 std::string s, t;

 char c = 'a';

 s.push_back(c); // s is now “a”;

 const char* cc = s.c_str(); // get ptr to “a”

 const char dd[] = "afaf";

 t = dd; // t is now “afaf”;

 t = t + s; // append “a” to “afaf”

}

std::vector

#include <vector>

void Func()

{

 std::vector<int> v(10);

 int a0 = v[3]; // unchecked access

 int a1 = v.at(3); // checked access

 v.push_back(2); // append element to end

 v.pop_back(); // remove last element

 size_t howbig = v.size(); // get # of elements

 v.insert(v.begin()+5, 2); // insert 2 after 5th element

}

• Example:

std::vector (cont.)

#include <vector>

#include <algorithm>

void Func()

{

 std::vector<int> v(10);

 v[5] = 3; // set fifth element to 3

 std::vector<int>::const_iterator it

 = std::find(v.begin(), v.end(), 3);

 bool found = it != v.end();

 if (found) {

 int three = *it;

 int indx = it - v.begin();

 int four = 4;

 }

}

• Example:

Iterators

• iterator – generalized pointer

• Each container has its own type of

iterator

void Func() {

 stl::vector<int> v;

 stl::vector<int>::const_iterator it = v.begin();

 for (it = v.begin() ; it != v.end() ; it++) {

 int val = *it;

 }

}

Types of iterators

template<class InputIterator, class Type>

InputIterator

find(InputIterator _First,

 InputIterator _Last,

 const Type& _Val);

• Each container provides a

different type

input

forward

bidirectional

random access

output

Types

Allocators

• STL written for maximum flexibility

• Each container has an allocator

• Allocator is responsible for memory
management (new/delete)

template < class Type,

 class Allocator = allocator<Type> >

class vector {

 ...

};

• Advice: Ignore allocators

Streams

• C

– flush, fprintf, fscanf, sprintf, sscanf

– fgets, getc

• C++

– cout, cin, cerr

Buffer overrun

• Never use sprintf!

• Use snprintf instead to avoid buffer

overrun

• Or use std::stringstream

Numerics

• valarray

– matrix and vector (not std::vector)

– slices and gslices

• complex

• random numbers

