

#### SNS COLLEGE OF TECHNOLOGY



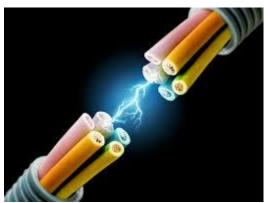
(An Autonomous Institution)
COIMBATORE-35
credited by NBA-AICTE and Accredited by NAAC

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# 19EET101 / BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING I YEAR / I SEMESTER UNIT-I: ELECTRICAL CIRCUITS AND MEASUREMENTS

**ELEMENTARY CONCEPTS OF ELECTRIC CIRCUITS** 



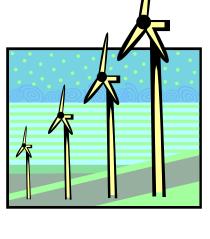



#### **TOPIC OUTLINE**



- Electricity?
- ■Voltage, Current, Resistance
- Nature of Current
  - Ohms Law










**ELECTRICITY COME FROM?** 

- We buy it from Power Plants
- We can generate it ourselves
  - Diesel or gasoline generators
  - Generated in our Car
  - Generated by home Solar or wind power
- We can get it from Batteries
- Sometimes we get it when we don't want it
  - Lightning



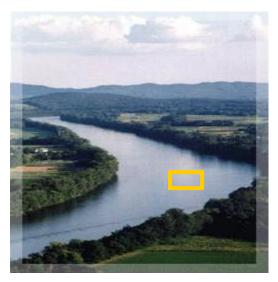




- It is the push or pressure behind current flow through a circuit, and is measured in (V) volts.
- Quantitative expression of the potential difference in charge between two points in an electrical field.








# **CURRENT (I)**



- Current refers to the quantity/volume of electrical flow. Measured in Amps (A)
- Flow of Electrons









# RESISTANCE (R)



- Resistance to the flow of the current. Measured in Ohms  $\Omega$
- It opposes an Electric Current







# **CHART**



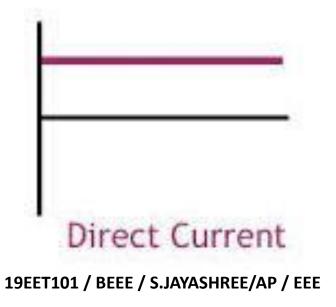
| Quantity   | Symbol | Unit of<br>Measurement | Unit<br>Abbreviation |
|------------|--------|------------------------|----------------------|
| Current    | l      | Ampere ("Amp")         | Α                    |
| Voltage    | E or V | Volt                   | V                    |
| Resistance | R      | Ohm                    | Ω                    |



## **NATURE OF CURRENT**



- Most power generated is Alternating Current (AC) power where the current and voltage varies Sinusoidal with time
- Direct Current (DC) power doesn't vary with time
- Most consumer products use both AC and DC



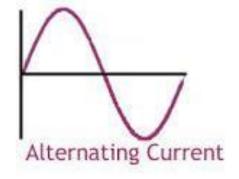







- DC current is used to power electronics
- DC current is easier to store (batteries)
- DC current is used in mobile applications
- Inverters convert DC to AC








#### b. AC CURRENT



- AC current is easier to distribute
  - ➤ Higher voltage and smaller current yields same power distributed
  - Transformers make it easy to change voltage levels so smaller wire can used
- AC is used for most machinery, lights and appliances
- Power supplies convert AC to DC







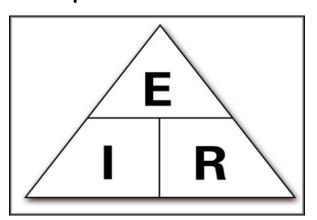
# **BASIC LAWS**

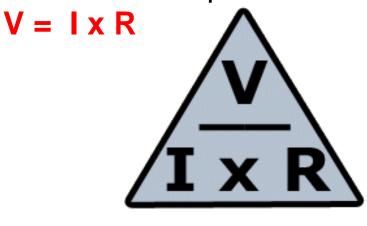


- OHMS LAW
- KIRCHOFF'S LAW






#### **OHMS LAW**

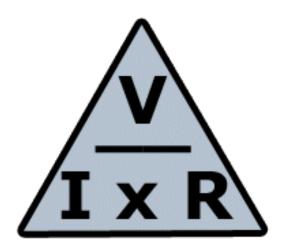



 Ohm's Law explains the relationship between Voltage (V), Current (I) and Resistance (R)

#### **Definition:**

States that at constant temperature, the current through a conductor between two points is directly proportional to the potential difference across the two points





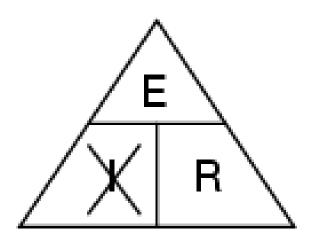







• 
$$V(E) = I \times R$$





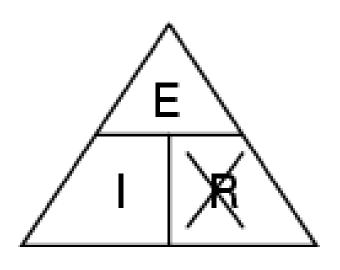



#### How do calculate?



- Battery voltage is 12V
- Current is Amp?
- Resistance 2 Ohm



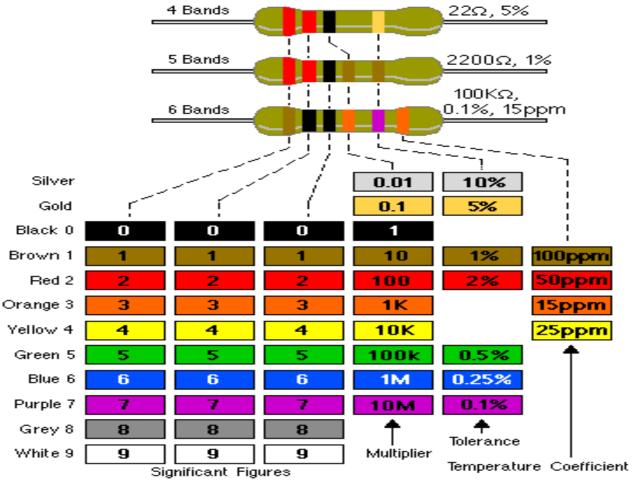





## How to calculate?



- Voltage is 12V
- Current is 4 Amps
- Resistance Ohms?








#### RESISTOR COLOR CHART





Resistor Color Code System







## RECAP....



...THANK YOU

