
The Transport Layer

The Transport Service

• Services Provided to the Upper Layers

• Transport Service Primitives

• Berkeley Sockets

• An Example of Socket Programming:
– An Internet File Server

Services Provided to the Upper Layers

The network, transport, and application layers.

Transport Service Primitives

The primitives for a simple transport service.

Transport Service Primitives (2)

The nesting of TPDUs, packets, and frames.

Transport Service Primitives (3)

A state diagram for a simple connection management scheme.
Transitions labeled in italics are caused by packet arrivals. The
solid lines show the client's state sequence. The dashed lines show
the server's state sequence.

Berkeley Sockets

The socket primitives for TCP.

Elements of Transport Protocols

• Addressing

• Connection Establishment

• Connection Release

• Flow Control and Buffering

• Multiplexing

• Crash Recovery

Transport Protocol

(a) Environment of the data link layer.
(b) Environment of the transport layer.

The transport layer is responsible for
process-to-process delivery.

NoteNote::

Types of data deliveries

Port Numbers

 IP addresses versus port numbers

Socket Sample

Multiplexing & De-multiplexing

Connection Establishment (1)

Connection Release
a) There are two styles of terminating a connection: asymmetric

release and symmetric release.

b) asymmetric release is the way the telephone system works: when
one party hangs up, the connection is broken

c) symmetric release treats the connection as two separate
unidirectional connections and requires each one to be released
separately.

d) asymmetric release may result in loss of data:

Connection Release

Connection Release (2)

The two-army problem.

Symmetric Release (3)
a) To see the relevance of the two-army problem to releasing

connections, just substitute ”disconnect” for ”attack.”

b) if neither side is prepared to disconnect until it is convinced that the
other side is prepared to disconnect too, the disconnection will
never happen.

c) Examples:

d) Normal case: Host 1 sends disconnect request (DR). Host 2
responds with a DR. Host 1 acknowledges, and ACK arrives at host
2.

e) ACK is lost: What should host 2 do? It doesn’t know for sure that
its DR came through.

f) Host 2’s DR is lost: What should host 1 do? Of course, send another
DR, but this brings us back to the normal case. This still means that
the ACK sent by host 1 may still get lost.

Connection Release (4)

(c) Response lost. (d) Response lost and subsequent DRs lost.

6-14, c,d

Error Control

Flow Control and Buffering

(a) Chained fixed-size buffers. (b) Chained variable-sized buffers.
(c) One large circular buffer per connection.

The Internet Transport Protocols: UDP

• Introduction to UDP

• Remote Procedure Call

• The Real-Time Transport Protocol

UDP is a connectionless, unreliable
protocol that has no flow and error

control. It uses port numbers to
multiplex data from the application

layer.

NoteNote::

Introduction to UDP

The UDP header.

Popular Application
Port Protocol Description

 7 Echo Echoes a received datagram back to the sender

 9 Discard Discards any datagram that is received

 11 Users Active users

 13 Daytime Returns the date and the time

 17 Quote Returns a quote of the day

 19 Chargen Returns a string of characters

 53 Nameserver Domain Name Service

 67 Bootps Server port to download bootstrap information

 68 Bootpc Client port to download bootstrap information

 69 TFTP Trivial File Transfer Protocol

111 RPC Remote Procedure Call

123 NTP Network Time Protocol

161 SNMP Simple Network Management Protocol

162 SNMP Simple Network Management Protocol (trap)

Remote Procedure Call

Steps in making a remote procedure call. The stubs are shaded.

The Real-Time Transport Protocol

(a) The position of RTP in the protocol stack. (b) Packet nesting.

The Internet Transport Protocols: TCP
• Introduction to TCP
• The TCP Service Model
• The TCP Protocol
• The TCP Segment Header
• TCP Connection Establishment
• TCP Connection Release

Port Protocol Description

 7 Echo Echoes a received datagram back to the sender

 9 Discard Discards any datagram that is received

 11 Users Active users

 13 Daytime Returns the date and the time

 17 Quote Returns a quote of the day

 19 Chargen Returns a string of characters

 20 FTP, Data File Transfer Protocol (data connection)

 21 FTP, Control File Transfer Protocol (control connection)

 23 TELNET Terminal Network

 25 SMTP Simple Mail Transfer Protocol

 53 DNS Domain Name Server

 67 BOOTP Bootstrap Protocol

 79 Finger Finger

 80 HTTP Hypertext Transfer Protocol

111 RPC Remote Procedure Call

The TCP Service Model (2)

(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application in a single
READ CALL.

Stream Delivery

Sending & Receiving Window

Example 1Example 1

Imagine a TCP connection is transferring a file of 6000 bytes. The
first byte is numbered 10010. What are the sequence numbers for
each segment if data are sent in five segments with the first four
segments carrying 1000 bytes and the last segment carrying 2000
bytes?

SolutionSolution

The following shows the sequence number for each segment:
 Segment 1 ==> sequence number: 10,010 (range: 10,010 to 11,009)
 Segment 2 ==> sequence number: 11,010 (range: 11,010 to 12,009)
 Segment 3 ==> sequence number: 12,010 (range: 12,010 to 13,009)
 Segment 4 ==> sequence number: 13,010 (range: 13,010 to 14,009)
 Segment 5 ==> sequence number: 14,010 (range: 14,010 to 16,009)

The bytes of data being transferred in
each connection are numbered by
TCP. The numbering starts with a

randomly generated number.

NoteNote::

The value of the sequence number
field in a segment defines the number
of the first data byte contained in that

segment.

NoteNote::

The value of the acknowledgment field
in a segment defines the number of the

next byte a party expects to receive.
The acknowledgment number is

cumulative.

NoteNote::

The TCP Segment Header

The TCP Segment Header (2)

Connection
opened

Passive
openActive

open

SYN

U A P R S F

seq: 8000

SYN + ACK
U A P R S F

seq: 15000

ack: 8001
rwnd: 5000

ACK

U A P R S F

seq: 8000
ack: 15001

rwnd: 10000

Means “no data” !
seq: 8001 if piggybacking

Connection Establishment

Connection Release

TCP Transmission Policy

Window management in TCP.

TCP Transmission Policy (2)

Silly window syndrome.

TCP Congestion Control

(a) A fast network feeding a low capacity receiver.
(b) A slow network feeding a high-capacity receiver.

Congestion Control
a) TCP has a mechanism for congestion control. The mechanism is

implemented at the sender

b) The window size at the sender is set as follows:

where

a) flow control window is advertised by the receiver

b) congestion window is adjusted based on feedback from the network

Send Window = MIN (flow control window, congestion window)Send Window = MIN (flow control window, congestion window)

AIMD
Source Destination

Add one packet
each RTT

Disadvantage
a) Too slow.

b) Reacts aggressively.

c) Wastage of bandwidth at initial stage.

d) Congestion is detected when time out occurs.

Congestion Control
a) The sender has two additional parameters:

– Congestion Window (cwnd) Initial value is 1 MSS (=maximum
segment size) counted as bytes

– Slow-start threshold Value (ssthresh) Initial value is the
advertised window size)

a) Congestion control works in two modes:
– Slow start (cwnd < ssthresh)
– Congestion avoidance (cwnd >= ssthresh)

Slow start, exponential increase

cwnd

1

cwnd

2

RTT

cwnd

4

RTT

cwnd

8

RTT

In the slow start algorithm, the size of the
congestion window increases exponentially

until it reaches a threshold.

Note

Congestion avoidance, additive increase

In the congestion avoidance algorithm the
size of the congestion window

increases additively until
congestion is detected.

Note

TCP Timers

Retransmission Timer
a) When a segment is sent, a retransmission timer is started.

b) If the segment is acknowledged before the timer expires, the timer
is stopped.

c) If, on the other hand, the timer goes off before the
acknowledgement comes in, the segment is retransmitted (and the
timer os started again).

Persistence Timer
a) It is designed to prevent the following deadlock.

b) The receiver sends an acknowledgement with a window size of 0,
telling the sender to wait. Later, the receiver updates the window,
but the packet with the update is lost. Now the sender and the
receiver are each waiting for the other to do something.

c) When the persistence timer goes off, the sender transmits a probe to
the receiver. The response to the probe gives the window size. If it
is still 0, the persistence timer is set again and the cycle repeats. If
it is nonzero, data can now be sent.

Keep-alive Timer
a) When a connection has been idle for a long time, the keep-alive

timer may go off to cause one side to check whether the other side
is still there.

b) If it fails to respond, the connection is terminated.

Timed Wait Timer
a) It runs for twice the maximum packet lifetime to make sure that

when a connection is closed, all packets created by it have died off.

Thanks

It’s beginning of end

