Fundamentals of the Analysis of Algorithm Efficiency

- Analysis Framework
- Asymptotic Notations and its properties
- Mathematical analysis of Non Recursive algorithms

• Mathematical analysis of Recursive algorithms

Mathematical analysis of Non - Recursive algorithms

- Analysis framework systematic analyze the time efficiency of non-recursive algorithm
- Example 1: Finding the largest value in a list of n numbers

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval \leftarrow A[i]

return maxval

A[i] = A[1]

Second max

maxval \leftarrow A[i]

return maxval

maxval \leftarrow A[i]
```

Example 1: Finding the largest value in a list of n numbers

$$maxval \leftarrow A[0]$$

for $i \leftarrow 1$ to $n-1$ do
if $A[i] > maxval$
 $maxval \leftarrow A[i]$
return $maxval$

1	What is the problem size	$\mid n \mid$	
2	What is the basic operation	Comparison in for loop	
3	Count of basic operation	$C(n) = \sum_{i=1}^{n-1} 1 = n-1 \epsilon \Theta(n)$	
4	Depends on what efficiency? Worst/best/average		

General Plan for Analyzing the Time Efficiency of Non recursive Algorithms

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's **basic operation**. (As a rule, it is located in the inner- most loop.)
- 3. Check whether the **number of times the basic operation is executed** depends only on the size of an input. If it also depends on some additional property, the **worst-case**, **average-case**, **and**, **if necessary**, **best-case efficiencies** have to be investigated separately.
- 4. Set up a sum expressing the number of times the algorithm's basic operation is executed.
- 5. Using **standard formulas** and rules of sum manipulation, either find a closed-form formula for the count or, at the very least, establish its order of growth.

Formula for Sum Manipulation

$$\sum_{i=l}^{u} ca_i = c \sum_{i=l}^{u} a_i, \tag{R1}$$

$$\sum_{i=l}^{u} (a_i \pm b_i) = \sum_{i=l}^{u} a_i \pm \sum_{i=l}^{u} b_i,$$
 (R2)

two summation formulas

$$\sum_{i=l}^{u} 1 = u - l + 1$$
 where $l \le u$ are some lower and upper integer limits, (S1)

$$\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2} n^2 \in \Theta(n^2).$$
 (S2)

Example 2: Element Uniqueness Problem

10	20	30	40	30	50	60
1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]

Here: n=7, n-1=6, n-2=5

```
ALGORITHM UniqueElements(A[0..n-1])
```

```
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n − 1]
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for i ← 0 to n − 2 do
for j ← i + 1 to n − 1 do
if A[i] = A[j] return false
return true
```

Example 2: Element Uniqueness Problem

1	What is the problem size	n
2	What is the basic operation	if statement (comparison)
3	Count of basic operation	$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1:$

- Depends on what efficiency? Worst/best/average

 Worst case all the elements are different all sequence of for loop

 Best case 1st and 2nd element are same comes out of loop
- 5 | Summation

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

 $(n-1)^2$ (n-2)(n-1) (n-1)n n = 1

*

Example 3: Sum of n numbers

Program:

Example:

$$n = 5$$
. count =0
 $i=1 \rightarrow count = 0+1 = 1$
 $i=2 \rightarrow count = 1+2 = 3$
 $i=3 \rightarrow count = 3+3 = 6$
 $i=4 \rightarrow count = 6+4 = 10$
 $i=5 \rightarrow count = 10+5 = 15$

Analysis of sum of n numbers:

- 1.Problem size?
- 2.Basic Operation?
- 3. Count of basic operation?
- 4. Worst / Best / Average case efficiency?

Example 4: to find the no of binary digits in a binary representation of a positive decimal integer

2 ⁵	24	2 ³	2 ²	21	20		Number	Binary representation
32	16	8	4	2	1		0	0000
					1	<	1	0001
				1	0		2	0010
				1	1	*	3	0011
	1	0	0	0	0		4	0100
ALGORIT	ALGORITHM Binary(n)						5	0101
	//Input: A positive decimal integer n //Output: The number of binary digits in n's binary representation.					ntation	6	0110
$count \leftarrow 1$ while $n > 1$ do						15	1111	
$count \leftarrow count + 1$ $n \leftarrow \lfloor n/2 \rfloor$						16	10000	

return count

Iteration	n value	Count
Initial	2	1
1 st		2
	n = n/2 = 1	

Iteration	n value	Count
Initial	3	1
1 st		2
	n=n/2=1.5	

Iteration	n value	Count
Initial	4	1
1 st		2
	n=4/2=2	
2 nd		3
	n=2/2=1	

Iteration	n value	Count
Initial	8	1
1 st		2
	n=8/2=4	
2 nd		3
	n=4/2=2	
3 rd		4
	n=2/2=1	

Example 4: Analysis

1	What is the problem size	n		
2	What is the basic operation	Comparison in while loop		
3	Count of basic operation	$C(n) = \sum_{i=1}^{\lg(n)+1} 1$		
4	Depends on what efficiency? Worst/best/average			

Example 5: Matrix Multiplication

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1],
B[0..n-1, 0..n-1]
//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n \times n matrices A and B
//Output: Matrix C = AB
for i \leftarrow 0 to n-1 do
for j \leftarrow 0 to n-1 do
C[i, j] \leftarrow 0.0
for k \leftarrow 0 to n-1 do
C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]
return C
```

Example 5: Matrix Multiplication Analysis

1	What is the problem size	Order of matrix		
2	What is the basic operation	Multiplication and addition		
3	Count of basic operation	$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$		
4	Depends on what efficiency? Worst/best/average			
5	Running time T(n) = Cop C(n) = Cm M(n) + Ca A(n) = Cm $n^3 + Ca n^3$ = $(Cm+Cn) n 3$			

Write the program for the following output and do the analysis process

1

1 2

123

1234

1 2 3 4 5