Fundamentals of the Analysis of Algorithm Efficiency

- Analysis Framework
- Asymptotic Notations and its properties
- Mathematical analysis of Non - Recursive algorithms
- Mathematical analysis of Recursive algorithms

Mathematical analysis of Non - Recursive algorithms

- Analysis framework - systematic - analyze the time efficiency of non-recursive algorithm
- Example 1: Finding the largest value in a list of n numbers

ALGORITHM MaxElement(A[0..n-1])
//Determines the value of the largest element in a given array
//Input: An array $A[0 . . n-1]$ of real numbers
//Output: The value of the largest element in A
maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do if $A[i]>$ maxval maxval $\leftarrow A[i]$
return maxval

Example 1: Finding the largest value in a list of n numbers

$$
\begin{aligned}
& \text { maxval } \leftarrow A[0] \\
& \text { for } i \leftarrow 1 \text { to } n-1 \text { do } \\
& \quad \text { if } A[i]>\text { maxval } \\
& \quad \text { maxval } \leftarrow A[i]
\end{aligned}
$$

return maxval

1	What is the problem size	n
2	What is the basic operation	Comparison in for loop
3	Count of basic operation	$C(n)=\sum_{i=1}^{n-1} 1=n-1 \varepsilon \boldsymbol{\Theta}(\boldsymbol{n})$
4	Depends on what efficiency? Worst/best/average	

General Plan for Analyzing the Time Efficiency of Non recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input's size.
2. Identify the algorithm's basic operation. (As a rule, it is located in the inner- most loop.)
3. Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, average-case, and, if necessary, best-case efficiencies have to be investigated separately.
4. Set up a sum expressing the number of times the algorithm's basic operation is executed.
5. Using standard formulas and rules of sum manipulation, either find a closedform formula for the count or, at the very least, establish its order of growth.

Formula for Sum Manipulation

$$
\begin{align*}
\sum_{i=l}^{u} c a_{i} & =c \sum_{i=l}^{u} a_{i}, \tag{R1}\\
\sum_{i=l}^{u}\left(a_{i} \pm b_{i}\right) & =\sum_{i=l}^{u} a_{i} \pm \sum_{i=l}^{u} b_{i}, \tag{R2}
\end{align*}
$$

two summation formulas

$$
\begin{align*}
& \sum_{i=l}^{u} 1=u-l+1 \quad \text { where } l \leq u \text { are some lower and upper integer limits, } \\
& \sum_{i=0}^{n} i=\sum_{i=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2} \approx \frac{1}{2} n^{2} \in \Theta\left(n^{2}\right) \tag{S2}
\end{align*}
$$

Example 2: Element Uniqueness Problem

$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$
$A[0]$	$A[1]$	$A[2]$	$A[3]$	$A[4]$	$A[5]$	$A[6]$

Here: $\mathrm{n}=7, \mathrm{n}-1=6, \mathrm{n}-2=5$
ALGORITHM UniqueElements(A[0..n-1])
//Determines whether all the elements in a given array are distinct
$/ /$ Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i]=A[j]$ return false
return true

Example 2: Element Uniqueness Problem

Example 3: Sum of n numbers

Program:

count $=0$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) count=count +i ;
return count;
Example:
$n=5$. count $=0$
$\mathrm{i}=1 \rightarrow$ count $=0+1=1$
$\mathrm{i}=2 \rightarrow$ count $=1+2=3$
$\mathrm{i}=3 \rightarrow$ count $=3+3=6$
$\mathrm{i}=4 \rightarrow$ count $=6+4=10$
$\mathrm{i}=5 \rightarrow$ count $=10+5=15$

Analysis of sum of n numbers:
1.Problem size?
2.Basic Operation?
3.Count of basic operation?
4.Worst / Best / Average case efficiency?

Example 4: to find the no of binary digits in a binary representation of a positive decimal integer

Iteration	n value	Count
Initial	$\mathbf{2}$	1
$1^{\text {st }}$		2
	$\mathrm{n}=\mathrm{n} / 2=1$	

Iteration	n value	Count
Initial	3	1
$1^{\text {st }}$		2
	$\mathrm{n}=\mathrm{n} / 2=1.5$	

Iteration	n value	Count
Initial	4	1
$1^{\text {st }}$		2
	$\mathrm{n}=4 / 2=2$	
$2^{\text {nd }}$		3
	$\mathrm{n}=2 / 2=1$	

Iteration	n value	Count
Initial	8	1
$1^{\text {st }}$		2
	$\mathrm{n}=8 / 2=4$	
$2^{\text {nd }}$		3
	$\mathrm{n}=4 / 2=2$	
$3^{\text {rd }}$		4
	$\mathrm{n}=2 / 2=1$	

Example 4: Analysis

1	What is the problem size	n
2	What is the basic operation	Comparison in while loop
3	Count of basic operation	$C(n)=\sum_{i=1} \mathbf{l g}(n)+1^{1}$
4	Depends on what efficiency? Worst/best/average	

Example 5: Matrix Multiplication

ALGORITHM MatrixMultiplication(A[0..n - 1, 0..n-1],
$B[0 . . n-1,0 . . n-1]$
//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two $n \times n$ matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do
for $j \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow 0.0$
for $k \leftarrow 0$ to $n-1$ do
$C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]$
return C

Example 5: Matrix Multiplication Analysis

1	What is the problem size	Order of matrix
2	What is the basic operation	Multiplication and addition
3	Count of basic operation	$M(n)=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 .$
4	Depends on what efficiency? Worst/best/average	
5	$\begin{aligned} \text { Running time } \mathrm{T}(\mathrm{n}) & =\operatorname{Cop} \mathrm{C}(\mathrm{n}) \\ & =\mathrm{Cm} \mathrm{M}(\mathrm{n})+\mathrm{CaA}(\mathrm{n}) \\ & =\mathrm{Cm} n^{3}+C a n^{3} \\ & =(C m+C n) n^{3} \end{aligned}$	

Write the program for the following output and do the analysis process

1

12
123
1234
12345

