3 BEVEL, WORM AND CROSS HELICAL GEARS

3.1 BEVEL GEAR

Bevel gears are used to transmit power between the shafts whose axes are intersecting at an angle. In bevel gears, teeth are cut on conical surface in contrast with spur and helical gears, for which the teeth are cut on a cylindrical surfaces. The structure of the helical gear is similarly to an uniformly serrated frustum of a cone.

3.1.1 BEVEL GEAR TERMINOLOGY

CLASSIFICATION

1. Based on the shape of teeth such as
a. Straight teeth bevel gears
b. Curved teeth bevel gears
2. Based on the angle between the shafts
a. External gear drive , if shaft angle $<90^{\circ}$
b. Internal gear drive ,if shaft angle $>90^{\circ}$
c. Mitre gear, if shaft angle $=90^{\circ}$

Example.Design a bevel gear drive to transmit 7 kW at 1600 rpm for the following data
Gear ratio $=3$
Material for pinion and gear $=\mathrm{C} 45$ Steel
Life $=10,000$ hours
Since the pinion and gear are made of same material, pinion is weaker than gear and its teeth are subjected to more number of cycles.

STEP-1-MINIMUM CONE DISTANCE

Minimum cone distance based on surface compressive strength
$\geq \quad \sqrt{2+1} \sqrt[3]{\left\{\left(\frac{0.72}{(-0.5)[1}\right\}^{2}[1\right.}$
(PSG 8.13)

Design torque $\left[\mathrm{M}_{\mathrm{t}}\right]=\mathrm{M}_{\mathrm{t}} \cdot \mathrm{k} \cdot \mathrm{k}_{\mathrm{d}}$
(PSG 8.15)
$\left[\mathrm{M}_{\mathrm{t}}\right]=97420 \mathrm{x} \frac{7}{1600} \mathrm{x} 1.5=640 \mathrm{kgf}-\mathrm{cm} ; \mathrm{k} . \mathrm{k}_{\mathrm{d}}=1.5$ (assumed)
Equivalent young's modulus $=2.15 \times 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$
$\left[\sigma_{c}\right]=5000 \mathrm{kgf} / \mathrm{cm}^{2}$
$\psi_{\mathrm{y}}=\mathrm{R} / \mathrm{b}=3($ for $\mathrm{i}=3)$
(PSG 8.14)
(PSG 8.5)
(PSG 8.15)
$\geq 3 \quad 33^{2+1} \sqrt{\left\{\frac{0.72}{(3-0.5) 5000}\right\}^{2} \frac{2.1510^{6} 640}{3} \geq 10.95 \mathrm{~cm}}$

STEP-2-AVERAGE MODULE

≥ 1.26

(PSG 8.15)
$\sigma_{b}=1400 \mathrm{kgf} / \mathrm{cm}^{2}$
$\psi_{\mathrm{m}}=-=10$ (initially assumed)
$y_{v}=$ form factor
$\mathrm{Z}_{\mathrm{v}}=\mathrm{Z}_{1 /} \cos \delta_{1}$ for pinion
(PSG 8.39)
$\tan \delta_{2}=\mathrm{i}=3 ; \delta_{2}=\tan ^{-1} \mathrm{i}=\tan ^{-1} 3=71.66$
$\delta_{1}=90-71.56=18.43^{\circ}$
$\mathrm{Z}_{\mathrm{v}}=\mathrm{Z}_{1} / \cos \delta_{1}=20 / \cos 18.43=21$
$y_{v}=0.396$
(PSG 8.18)
≥ 1.26

$$
\sqrt[3]{\frac{640}{0.39614001020}}=0.226 \mathrm{~cm}=2.3 \mathrm{~mm}
$$

STEP-3-TRANSVERSE MODULE

$\mathrm{m}_{\mathrm{t}}=\mathrm{m}_{\mathrm{av}} \mathrm{X} \overline{(-0.5 \quad)}=2.3 \times \frac{3}{(3-0.5)}=2.76 \mathrm{~mm}$
next standard module $=3 \mathrm{~mm}=0.3 \mathrm{~cm}$

STEP-4-CORRECTED CONE DISTANCE

$$
\begin{equation*}
=0.5_{1} \quad \sqrt{\left(^{2}+1\right)} \tag{PSG8.38}
\end{equation*}
$$

$10.95=0.5 \times 0.3 \mathrm{xz}_{1} \mathrm{x} \sqrt{\left(3^{2}+1\right)} ; \mathrm{z}_{1}=23.08 \approx 24$
$\mathrm{z}_{1}=24$ and $\quad \mathrm{z}_{2}=\mathrm{ixz}=3 \times 24=72$
Final cone distance $\mathrm{R}=0.50 .324 \quad \sqrt{\left(3^{2}+1\right)} \quad=11.4 \mathrm{~cm}$
Since the final cone distance is greater than initial distance our design is safe.

STEP-5-FACE WIDTH

$\mathrm{b}=-=\frac{11.4}{3}=3.8 \mathrm{~cm} \approx 4 \mathrm{~cm}$

STEP-6-CHECKING THE INDUCED STRESSES

$$
\begin{align*}
& =\frac{0.72}{(-0.5)} \sqrt{\frac{\sqrt{\left({ }^{2}+1\right)^{3}[]}}{}} \tag{PSG8.13}\\
& \quad=\frac{0.72}{(11.4-0.54)} \sqrt{\frac{\sqrt{\left(3^{2}+\right) 1^{3} 2.1510^{6} 640}}{34}} \\
& =4638 \mathrm{kgf} / \mathrm{cm}^{2}<\left[\sigma_{c}\right]=5000 \mathrm{kgf} / \mathrm{cm}^{2}
\end{align*}
$$

Our design if safe.

$$
\begin{equation*}
=\frac{\sqrt{\left({ }^{2}+1\right)[\quad]}}{\left(-0.5^{2} . .\right)}{ }^{1} \leq\left[\sigma_{\mathrm{b}}\right] \tag{PSG8.13a}
\end{equation*}
$$

$\mathrm{A}=20^{\circ}$ usually

$$
=\frac{11.4 \sqrt{\left(3^{2}+1\right) 640}}{\left(11.4-0.54^{2} 40.30 .396\right.} \quad \frac{1}{o 20}=591 \mathrm{kgf} / \mathrm{cm}^{2} \leq\left[\sigma_{\mathrm{b}}\right]=1400 \mathrm{kgf} / \mathrm{cm}^{2}
$$

STEP-7-PITCH CIRCLE DIAMETER

For pinion $\mathrm{d}_{1}=\mathrm{m}_{\mathrm{t}} \mathrm{Z}_{1}=3 \times 24=72 \mathrm{~mm}$
For gear $\mathrm{d}_{2}=\mathrm{m}_{\mathrm{t}} \mathrm{Z}_{2}=3 \times 72=216 \mathrm{~mm}$

STEP-8-TIP CIRCLE DIAMETER

$\mathrm{d}_{\mathrm{a} 1}=\mathrm{m}_{\mathrm{t}}\left(\mathrm{Z}_{1}+2 \cos \delta_{1}\right)=3(24+2 \cos 18.43)=77.7 \approx 78 \mathrm{~mm}$
(PSG 8.38)
$\mathrm{d}_{\mathrm{a} 2}=\mathrm{m}_{\mathrm{t}}\left(\mathrm{z}_{2}+2 \cos \delta_{2}\right)=3(72+2 \cos 71.56)=218 \mathrm{~mm}$

STEP-9-ADDENDUM ANGLE θ_{a}

$\theta_{\mathrm{a} 1}=\theta_{\mathrm{a} 2}=\tan ^{-1}\left(\frac{0}{}\right)=\tan ^{-1}\left(\frac{0.31}{11.4}\right)=1.5^{\circ}$

STEP-10-DEDENDUM ANGLE $\boldsymbol{\theta}_{\mathrm{f}}$

$\theta_{\mathrm{f} 1}=\theta_{\mathrm{f} 2}=\tan ^{-1}\left(\frac{\left(_{0}+\right)}{}\right)=\tan ^{-1}\left(\frac{0.3(1+0.2)}{11.4}\right)=1.8^{\circ}$

STEP-11-TIP ANGLE

For pinion $\quad \delta_{a 1}=\delta_{1}+\theta_{a 1}=18.43+1.5=19.93^{\circ}$
For gear $\quad \delta_{\mathrm{a} 2}=\delta_{2}+\theta_{\mathrm{a} 2}=71.56+1.5=73.06^{\circ}$

STEP-12-ROOT ANGLE

For pinion $\quad \delta_{\mathrm{fl}}=\delta_{1}-\theta \mathrm{f}_{1}=18.43-1.5=16.63^{\circ}$
For gear $\quad \delta_{\mathrm{f} 2}=\delta_{2}-\theta_{\mathrm{f} 2}=71.56-1.5=69.76^{\circ}$

STEP-13-OTHER PARAMETERS

Addendum $\mathrm{h}_{\mathrm{a}}=\mathrm{m}_{\mathrm{t}}=3 \mathrm{~mm}$
Dedendumh $_{\mathrm{f}}=1.1236 \mathrm{x} \mathrm{m}_{\mathrm{t}}=1.1236 \mathrm{x} 3=3.4 \mathrm{~mm}$
Tooth height $h=h_{a}+h_{f}=3+3.4=6.4 \mathrm{~mm}$

SPECIFICATION

SL NO SPECIFICATION
1.
2.

Material
Cone distance

PINION

C45 steel
114 mm

GEAR

C45 steel 114 mm

