CANAL FALL / DROP

Mr.N.KARTHIKEYAN, AP/CE
Ms.M.INDHUMATHI, AP/CEP

CONTENTS
> Introduction
> Necessity
> Types of Falls

Canal : An artificial waterway constructed to allow the passage of boats or ships or to convey water for irrigation provided with permissible slope.

Canal Fall : A Structure constructed to achieve the object of lowering the bed level of a canal suitably

INTRODUCTION

> Canals are constructed with some permissible bed slopes so that there is no silting in the canal bed
> Ground surface may be steep and sometimes it may be very irregular with abrupt change of grade.

Necessity: When the slope of the ground suddenly changes to steeper slope.

> When the slope of the ground is more or less uniform and the slope is greater than the permissible bed slope ofcanal

CONSIDERATIONS IN SELECTING TYPE OF FALL:

- The height of fall of water
- The discharge passing over the fall
- Topography of site location
\odot Type of soil in upstream and downstream of structure
- Economy
- Ogee fall
- Rapid fall
- Trapezoidal fall
- Stepped fall
- Montague fall
- Vertical drop fall
- Straight Glacis fall

An ogee curve (a combination of convex curve and concave curve) is provided for carrying the canal water from higher level to lower level.

Fig: Ogee Fall

$>$ It is limited to low depths

$>$ Due to smooth transition, velocity of flow is not reduced since it may cause erosion in down stream $>$ It has high discharging efficiency

RAPID FALL
> It is suitable when the slope of the natural ground surface is even and long. It consists of a gentle longitudinal slope which varies from 1 in 10 to 1 in 20 .

Fig: Rapid Fall
> These are expensive compared to others
> Commonly used at West Yamuna canal

TRAPEZOIDAL FALL

$>$ In this the body wall consists of several trapezoidal notches between the side piers and the intermediate piers.
$>$ The sills of the notches are kept at the upstream bed level of the canal.

Fig: Trapezoidal Notch Fall
$>$ It may of Singular or number of openings constructed at high crested wall providing smooth entrance to downstream
$>$ With this the depth to discharge value are less affected
$>$ These are quite common and economical

> It consists of a series of vertical drops in the form of steps.

> This steps is suitable in places where sloping ground is very long and require a long gentle slope to connect the higher bed level at u / s with lower bed level atd/s.

ERTICAL DROP FALL
$>$ In this Canal u / s bed is on the level of upstream curtain wall, canal d/s bed level is below the crest of curtain wall. In both the cases, a cistern is formed to act as water cushion.

Fig: Vertical Drop Fall
> Easy to construct and economical
> Losses may be high in case of higher depths
> For discharges upto 15 cumecs vertical drop fall is used

STRAIGHT GLACIS FALL

> It consists of a straight glacis provided with a crest wall. For dissipation of energy of flowing water, a water cushion is provided

$>$ Generally sloping will be $2: 1$
> These have Good performance
> Suitable upto 60cumecs and drop of 1.5 m

MONTAGUE TYPE FALL
> In the straight steep type profile, energy dissipation is not complete. Therefore, montague developed this type of profile where energy dissipation takes place

Fig: Montague Type Fall

