
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING
I YEAR - I SEM

UNIT 3 – ARRAYS AND STRINGS

TOPIC 3 – Two – Dimensional Arrays

222/8

TWO-DIMENSIONAL ARRAYS

 So far we have discussed the array variables that can store a list of values.

 There could be situations where a table of values will have to be stored

 Consider the following data table, which shows the value of sales of three items by four sales girls:

 The table contains a total of 12 values, three in each line.

 We can think of this table as a matrix consisting of four rows and three columns.

 Each row represents the values of sales by a particular salesgirl

 Each column represents the values of sales of a particular item.

 In mathematics, we represent a particular value in a matrix by using two subscripts such as vij.

 Here v denotes the entire matrix and vij refers to the value in the ith row and jth column.

 For example, in the above table v23 refers to the value 325.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

333/8

DECLARATION OF TWO-DIMENSIONAL ARRAYS

 C allows us to define such tables of items by using two-

dimensional arrays.

 The table discussed above can be defined in C as

v[4][3]

 Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

 Note that unlike most other languages, which use one

pair of parentheses with commas to separate array sizes,

C places each size in its own set of brackets.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

444/8

INITIALIZING TWO-DIMENSIONAL ARRAYS

 As Like the one-dimensional arrays, two-dimensional arrays may be initialized by following

their declaration with a list of initial values enclosed in braces.

 For example, int table[2][3] = { 0,0,0,1,1,1};

 initializes the elements of the first row to zero and the second row to one.

 The initialization is done row by row.

 The above statement can be equivalently written as int table[2][3] = {{0,0,0}, {1,1,1}};

 by surrounding the elements of the each row by braces.

 We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3] = {

{0,0,0},

{1,1,1}

};

 Commas are required after each brace that closes off a row, except in the case of the last row.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

555/8

INITIALIZING TWO-DIMENSIONAL ARRAYS

 When the array is completely initialized with all values, explicitly, we need not specify the size of the first

dimension.

 That is, the statement int table [] [3] = {

{ 0, 0, 0},

{ 1, 1, 1}

};

 is permitted.

 If the values are missing in an initializer, they are automatically set to zero.

 For instance, the statement int table[2][3] = {

{1,1},

{2}

};

 will initialize the first two elements of the first row to one, the first element of the second row to two, and

all other elements to zero.

 When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

 The first element of each row is explicitly initialized to zero while other elements are automatically

initialized to zero.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

666/8

MEMORY LAYOUT

 The subscripts in the definition of a two-dimensional array represent rows and columns.

 This format maps the way that data elements are laid out in the memory

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

777/8

MULTI-DIMENSIONAL ARRAYS

 C allows arrays of three or more dimensions.

 The exact limit is determined by the compiler.

 The general form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

 where si is the size of the ith dimension.

 Some examples are:

int survey[3][5][12];

float table[5][4][5][3];

 survey is a three-dimensional array declared to contain 180 integer type elements.

 Similarly table is a four dimensional array containing 300 elements of floating-point type.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

888/8

DYNAMIC ARRAYS

 Static Arrays:

 So far, we have created arrays at compile time.

 An array created at compile time by specifying size in the source code has a fixed size and cannot be

modified at run time.

 The process of allocating memory at compile time is known as static memory allocation

 The arrays that receive static memory allocation are called static arrays.

 This approach works fine as long as we know exactly what our data requirements are.

 Consider a situation where we want to use an array that can vary greatly in size.

 We must guess what will be the largest size ever needed and create the array accordingly.

 Dynamic Arrays:

 In C it is possible to allocate memory to arrays at run time.

 This feature is known as dynamic memory allocation and the arrays created at run time are called

dynamic arrays.

 Dynamic arrays are created using what are known as pointer variables and memory management functions

malloc, calloc and realloc.

 These functions are included in the header file <stdlib.h>.

Two – Dimensional Arrays/ Prog. For Prob.Solving / Anand Kumar. N/IT/SNSCT

