TIME SPEED AND DISTANCE

Speed:

Speed is simply defined as the distance coveredper unit time. Mathematically, it is defined as :

- \quad Speed $=$ Distance Travelled / Time Taken
- Formula of Time in terms of distance andSpeed: Time = Distance/ Speed
- Formula of Distance in terms of Speed andTime: Distance $=(\mathbf{S p e e d} \mathbf{X}$ Time $)$
- It is very important to know the importanceof unit while solving these kinds of problem.

SI Unit for Speed: Meter per second
SI Unit for Distance: Meter
SI Unit for Time: Second
All the formulas of speed, time and distance areinterrelated. One needs to connect the information given in the problems wisely and this can be doneeasily with a good practice. Let us now discuss thevarious types of Speed, Distance \& Time questions. TYPE 1
Now, we will discuss the most frequently used concept in this chapter i.e. questions based on the unit conversion. So, in order to learn this concept, we need to know how these questions are framedin the question paper.

Question: A train runs at $\mathbf{X ~ k m} / \mathrm{hr}$ and it takes

18 seconds to pass a pole. The length of the train is 180 m . Find the speed of the train $\mathrm{in} \mathrm{km} / \mathrm{hr}$. Solution:

Speed $=$ distance $/$ TimeTherefore, $S=180 \mathrm{~m} / 18 \mathrm{~s}=10 \mathrm{~m} / \mathrm{s}$
Now we need the answer in $\mathrm{km} / \mathrm{hr}$ and for that, we will multiply the given speed with (18/5) in order toget the answer in km / h

Therefore, $S=10 *(18 / 5)=36 \mathrm{~km} / \mathrm{h}$. So here the trick for the same is :

- Convert metre per second (m/sec) to km per hr (km/h)

For converting (meter per
second) to (kilometer per hour) we usefollowing formula $s \boldsymbol{m} / \boldsymbol{s e c}=\mathrm{S}$
*(18/5) km/h

- Convert $\mathbf{k m}$ per $\mathbf{h r}(\mathbf{k m} / \mathbf{h})$ to metre persecond ($\mathbf{m} / \mathbf{s e c}$)

For converting kph (kilometre per hour) to mps (meter per second) we use following formula S $\mathbf{k m} / \mathrm{hr}=(s * 5 / 18) \mathrm{m} / \mathrm{sec}$

Question: A boy covers a distance of 600 m in2min 30 sec . What will be the speed in $\mathrm{km} / \mathrm{hr}$? Solution:
Speed $=$ Distance $/$ Time $=$ Distance covered $=600 \mathrm{~m}$, Time taken $=2 \mathrm{~min} 30 \mathrm{sec}=150 \mathrm{sec}$ Therefore, Speed $=600 / 150=4 \mathrm{~m} / \mathrm{sec}=4 \mathrm{~m} / \mathrm{sec}$
$=(4 * 18 / 5) \mathrm{km} / \mathrm{hr}=14.4 \mathrm{~km} / \mathrm{hr}$

Type 2

Considering 2 objects A and B having the speed x, y.

- If the ratio of the speeds of A and B is $x: y$, then the ratio of the times taken by then to cover the same distance is: $\mathbf{1 / x}: \mathbf{1 / y}$ or $\mathbf{y}: \mathbf{x}$

Question: The ratio of the speed of a bike and a motor is $4: 5$ then what will be the ratio for the time taken by both the vehicles for the same destination?

Solution:

As the destination is the same so distance will besame for both Car and bike.
Let the Distance be d
And the speeds for both the vehicles be 4 s and $5 \mathrm{sNow}, \mathrm{t} 1=\mathrm{d} / 4 \mathrm{~s}$

$$
\begin{equation*}
\mathrm{t} 2=\mathrm{d} / 5 \mathrm{~s}--(2) \tag{1}
\end{equation*}
$$

so,t1/t2 $=5 / 4=5: 4$
Type 3

- Average Speed is another very important concept. It is defined as:

Average Speed = Total Distance Travelled
/Total Time Taken
Question: Dewansh travels 320 kms at 64
$\mathrm{km} / \mathrm{hr}$ and returns at $80 \mathrm{~km} / \mathrm{hr}$. Calculate theaverage speed of Dewansh?
Solution:
We know that speed $=$ Distance/ time taken
$\Rightarrow \quad \therefore$ Total time taken $=320 / 64+320 / 80=9$
\Rightarrow Average Speed $=(320+320) / 9$
\Rightarrow Average speed $=71.11 \mathrm{~km} / \mathrm{hr}$
Question: A car moving with a uniform speed of $50 \mathrm{~km} / \mathrm{h}$ covers half the distance with this speed. Half of the time of the remaining distance is covered with speed $35 \mathrm{~km} / \mathrm{h}$ and the other half time at $10 \mathrm{~km} / \mathrm{h}$. If the total distance travelled is 90 km then What was thecar's average speed
(approximately) duringhis entire journey?

Solution:
Half of total distance $=45 \mathrm{~km}$, Speed $=50 \mathrm{~km} / \mathrm{h}$ Time taken $=45 \mathrm{~km} / 50=0.9 \mathrm{hr}=0.9 \times 60=54$ minutes

Let time taken for remaining 45 km be TAnd, distance via speed $10 \mathrm{~km} / \mathrm{hr}$ by D Then, ATQ,
$\mathrm{T} / 2=(45-\mathrm{D}) / 35 \ldots(1)$ And, $\mathrm{T} / 2=(\mathrm{D}) / 10 \ldots$ (2)
Equating equations $1 \& 2$,
$(45-\mathrm{D}) / 35=(\mathrm{D}) / 1010(45-\mathrm{D})=35 \mathrm{D}$
$45 \mathrm{D}=450$ or,
$\mathrm{D}=10 \mathrm{~km}, \mathrm{~T}=2$ hour
Total time $=2+.9=2.9$ hour Average speed $=90 / 2.9=31 \mathrm{~km} / \mathrm{hr}$ Type 4

- Suppose a Person covers a certain distance at $\mathbf{x ~ k m} / \mathbf{h r}$ and an equal distance aty $\mathbf{k m} / \mathbf{h r}$.

Then, the average speed for the completeJourney: $\mathbf{2 x y} /(\mathbf{x}+\mathbf{y})$
Question: A train goes from Ballygunge to Sealdah at an average speed of $20 \mathrm{~km} / \mathrm{hour}$ and comes back at an average speed of $30 \mathrm{~km} / \mathrm{hour}$. The average speed of the train for the whole journey is?

Solution:

Let x and y be the average speed for the samedistance in two different times.
Then, average speed $=(2 x y) /(x+y)$
A train goes from Ballygunge to Sealdah at an average speed of $20 \mathrm{~km} / \mathrm{hour}$ and comes back at an average speed of $30 \mathrm{~km} /$ hour.

The average speed of train $=(2 \times 20 \times 30) /(20+30)=24 \mathrm{~km} / \mathrm{hr}$
Question: A boy goes to school at a speed of 3 km per hr and returns to the village at a speedof 2 km per hr. If he takes 5 hrs in all, what is the distance between the village and the school?

Solution:

Let the required distance be xkm .
Then time taken during the first journey $=x / 3 \mathrm{hr}$. and time taken during the second journey $=\mathrm{x} / 2 \mathrm{hr}$.
$\mathrm{x} / 3+\mathrm{x} / 2=5 \Rightarrow(2 \mathrm{x}+3 \mathrm{x}) / 6=5$
$\Rightarrow 5 \mathrm{x}=30$.
=> $x=6$

Required distance $=6 \mathrm{~km}$.

Type 5

- In this type, we will discuss the formulas related to Train problems which are most common in the competitive exams.

