
Unit 4

User interface analysis and design:

The visual part of a computer application or operating system through which a client interacts with

a computer or software.

It determines how commands are given to the computer or the program and how data is displayed

on the screen.

Types of User Interface

There are two main types of User Interface:

 Text-Based User Interface or Command Line Interface

 Graphical User Interface (GUI)

Text-Based User Interface: This method relies primarily on the keyboard. A typical example of this is

UNIX.

Advantages

 Many and easier to customizations options.

 Typically capable of more important tasks.

Disadvantages

 Relies heavily on recall rather than recognition.

 Navigation is often more difficult.

Graphical User Interface (GUI): GUI relies much more heavily on the mouse. A typical example of this

type of interface is any versions of the Windows operating systems.

GUI Characteristics

 Windows

 Icons

 Menus

 Pointing

 Graphics

Advantage

 Less expert knowledge is required to use it.

 Easier to Navigate and can look through folders quickly in a guess and check manner.

 The user may switch quickly from one task to another and can interact with several different

applications.

Disadvantages

 Typically decreased options.

 Usually less customizable. Not easy to use one button for tons of different variations.

UI Design Principles

Structure: Design should organize the user interface purposefully, in the meaningful and usual based on

precise, consistent models that are apparent and recognizable to users, putting related things together

and separating unrelated things, differentiating dissimilar things and making similar things resemble one

another. The structure principle is concerned with overall user interface architecture.

Simplicity: The design should make the simple, common task easy, communicating clearly and directly in

the user's language, and providing good shortcuts that are meaningfully related to longer procedures.

Visibility: The design should make all required options and materials for a given function visible without

distracting the user with extraneous or redundant data

Feedback: The design should keep users informed of actions or interpretation, changes of state or

condition, and bugs or exceptions that are relevant and of interest to the user through clear, concise,

and unambiguous language familiar to users.

Tolerance: The design should be flexible and tolerant, decreasing the cost of errors and misuse by

allowing undoing and redoing while also preventing bugs wherever possible by tolerating varied inputs

and sequences and by interpreting all reasonable actions.

Design Concepts:

In software development, there are many stages of planning and analysis before the project is finalized

and development can formally begin. Design always comes before development, and functional design

makes coding and maintenance very simple.

There are seven main principles to keep in mind in the design model in object-oriented programming

(OOP):

 Abstraction

 Patterns

 Separation of data

 Modularity

 Data hiding

 Functional independence

 Refactoring

Abstraction & Patterns

 In abstraction, is the process of hiding complex properties or characteristics from the software

itself to keep things more simplistic.

 This allows for a much higher level of efficiency for complex software designs since it allows the

developers to list out only the necessary elements or objects required.

 In this principle, the developer will define the properties, type of functions, and the interface

for each of said objects in the project.

 The developers will be able to hide the complicated and unnecessary details in the background

while retaining core information in the foreground.

There are three main patterns:

Architectural, which is a high-level pattern type that can be defined as the overall formation and

organization of the software system itself.

Design, which is a medium-level pattern type that is used by the developers to solve problems in the

design stage of development. It can also affect how objects or components interact with one another.

And, finally, idioms, which are low-level pattern types, often known as coding patterns, and are used as

a workaround means of setting up and defining how components will be interacting with the software

itself without being dependent on the programming language.

Separation of Data & Modularity

This principle states that the software code must be separated into two sections called layers and

components.

To ensure proper implementation, the two sections must have little to no overlap between them and

must have a defined purpose for each component.

This principle allows each component to be developed, maintained, and reused independently of one

another.

Modularity, on the other hand, refers to the idea of using predetermined code to increase overall

efficiency and management of the current project. The software components will usually be divided into

unique items known as modules. Their specific functions divide these modules. Modularity makes the

systems easy to manage.

Hiding, Independence, & Refactoring

Also known as information hiding, data hiding allows modules to pass only the required information

between themselves without sharing the internal structures and processing. The specific purpose of

hiding the internal details of individual objects has several benefits.

Refactoring is the process of changing a software system in such a way that it does not alter the

function of the code yet improves its internal structure.

Interface Analysis:

Interface Analysis is a business analysis elicitation technique that helps to identify interfaces between

solutions/applications to determine the requirements for ensuring that the components interact with

one another effectively.

Interface types range from user interfaces (human beings interacting directly with the system);

interfaces to and from external applications; and interfaces to and from external hardware/gadgets.

The requirements that define how human beings interact with the system; how applications link to

other applications and how hardware links to applications need to be defined for effective functioning of

the system. Interface analysis helps in discovering the requirements needed to integrate software into

its new environment.

Our services:

Analyze and advise the information interface between softwares and hardwares to ensure an effective

connection.

Review software requirements specifications, software design description records and source code with

hardware, operator, and software interface design documentation, for correctness, consistency,

completeness, accuracy, and readability

 Webapp interface design

https://www.slideshare.net/heminpatel8/web-application-design-147675133

UX workflow:

 UX workflow is a step-by-step process designers must follow from conceptualization to design handoff.

A typical UX workflow loosely follows the five stages of the design thinking process, but there is no

specific workflow method.

How designers and organizations develop a UX workflow is a matter of preference, depending on

multiple factors, including the product, organizational structure, policies, and tools, to name a few.

Some workflows will include a few steps, while others might have ten or more.

Steps of a Typical UX Workflow

The following is a typical design workflow most UX teams use:

1. Defining the business need

2. Conducting research and gaining insights

3. Analyze research and ideate

4. Creating information architecture & user flows

5. Lo-fi prototyping

6. Hi-fi prototyping

7. Testing

8. Design handoff

Defining the Business Need

Defining the business need or project scope is a crucial first step. UX is about solving users’ problems but

within the context of the company and product.

UX designers will meet with the project manager and other stakeholders to discuss the business need

and scope. This phase of the workflow might take several meetings and workshops to get input from all

stakeholders.

The business need will include the following:

 Project scope

 Project roadmap

 Timeframe and deadlines

 Tasks and objectives

 User data and analytics

 Financial and technical constraints

 Stakeholders, roles, and responsibilities

Conducting Research and Gaining Insights

With a clear goal and purpose in mind, UX teams begin the research phase. Research methods will

include:

 General user research

 Conducting interviews

 User focus groups

 Surveys

 Competitor research

 Market research

Analyze Research & Ideate

UX teams will analyze research insights to define:

 User personas

 Empathy and journey maps

 User problems and pain points

 Where competitors win and fail

 Business value opportunities

Teams can ideate to develop solutions with a clear picture of the users, market, problems, and business

value opportunities. It’s a collaborative brainstorming exercise often involving stakeholders from several

departments like product, marketing, and engineering to get diverse ideas and perspectives.

Creating Information Architecture & User Flows

Using research results, UX designers begin listing and organizing the screens they’ll need to design.

Using these lists, they can create the information architecture or sitemap to define user flows and

navigation.

 Lo-Fi Prototyping

With information architecture and user flows defined, UX designers begin hand sketching wireframes to

create low-fidelity paper prototypes. Paper prototyping is a collaborative effort where UX designers

gather to simulate different user flows and identify the elements and components the product will need.

Once design teams have exhausted paper prototyping, they create digital wireframes and low-fidelity

prototypes using a design tool. These lo-fi digital prototypes use simple click/tap interactions to test

navigation and user flows.

Hi-Fi Prototyping

UI designers convert wireframes to mockups that resemble the final product’s aesthetics before

adding interactivity to create functioning high-fidelity prototypes.

With UXPin, designers can build fully functioning high-fidelity prototypes with advanced interactions,

animations, conditional formatting, variables, data capture and validation, expressions, and even give

elements (like buttons) states – features you cannot get from other leading design tools.

Testing

We’ve put testing at step seven in this UX workflow, but ultimately, designers begin testing from the

very beginning. They might not always test with participants, but designers will constantly experiment to

validate ideas and concepts.

But the most critical testing happens once design teams have working prototypes. Late usability testing

with end-users produces meaningful feedback for designers to make changes, test, and iterate until the

product is error-free and working as intended.

Design Handoff

The final design handoff to the development team is a critical and often tense part of any designer’s UX

workflow. If designers forget deliverables or the testing isn’t thorough enough, it could cost the

organization time and money to fix it!

Like testing, the design handoff starts early in the design process. Product designers, UX teams, and

engineers meet periodically throughout the project to ensure designs meet technical constraints and

designers document their work correctly.

Integrating UX and Agile development:

How the UX and Agile development mapped together in agile requirement gathering, planning,

Modelling,Designing, deployment like wise the UX flow happens

