

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AGRICULTURE ENGINEERING

19AGT202 – MACHINE DESIGN

III YEAR V SEM

UNIT 5 – DESIGN OF TRANSMISSION SYSTEM COMPONENTS

TOPIC – CHAIN DRIVE COMPONENTS & DESIGN

Chain Drives

- Roller chain is mostly used to transmit power.
- A chain is a power transmission element made as a \bullet series of pin-connected links.
- Load is applied by the driving sprocket on the chain, \bullet the load is transmitted to a bushing, pin, and pair of link plates, pins and link plates push the driven sprocket to run. Hinge Chain link

Chain Drives

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

3

Chain Drives - Advantages

- Due to no slippage, constant velocity is obtained.
- Less width is occupied, due to metal strength.
- Can be used for short as well as long center distances.
- High transmission efficiency (97-99%).
- One chain can transfer power to multiple shafts.
- Can be operated at high temperature.
- Permits high speed ratio of 8 to 10.
- Multiple reduction stages are made, for high reduction ratio.

Chain Drives - Limitations

- Installation and component cost is higher.
- Require maintenance and lubrication.
- Velocity fluctuation occurs, when mounted inaccurately.

Chain Drives – Roller chains

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

Plates

Chain Drives - Nomenclature

Pitch

Is the distance between the centers of two adjacent pins. **Pitch circle radius (r_)** Distance

between the pin center and the

center of

sprocket, when the hinge

meshed with that sprocket.

is

- Can be used up to 0.25m/s - Two types : Oval and square links

Conveyor Chains

- Used for elevating and conveying within -0.8 to 3m/s.
- Two types : Detachable or hook joint, closed joint type.

Chain Drives - Classification

Chain Drives - Classification

- Power Transmitting Chains
- Used for short center distance.
- Three types :
- Block or bush chain
- Bush roller chain
- Silent chain

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

....

Chain Drives – Lubrication

- The performance of chain assembly is improved by proper lubrication. It reduces the friction and act as a coolant.
- Improper lubrication produces premature chain failure.
- types depend upon the Lubrication environment.

speed and

Chain Drives – Lubrication

- Manual lubrication : Lube is applied periodically using brush or oil can. e.g. cycle or bike chain.
- Drip lubrication : oil drips with sufficient flow is

directed on the chain. e.g. Conveyor chains, engine.

Chain Drives – Lubrication

- **Bath or Disc lubrication** : chain runs through an oil sump or bath in the drive housing. In disc lubrication, a disc picks up the oil and deposit on chain. Oil level is to be maintained in these cases.
- Stream lubrication : Some nozzles attached with supply of oil, are set on chain to spray the oil on chain near sprocket engagement. clip

Chain Drives – Roller chains

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

(a) Standard roller chain, single strand

(b) Standard roller chain, two-strand (also available with three and four strands)

(c) Heavy series roller chain

(d) Double-pitch drive chain

(e) Double-pitch conveyor chain

Roller chains - Recommendations

• $T_1 \le 17, T_2 \le 120$

 $T_1, T_2 = No.$ of teeth on small, large sprocket

- Velocity Ratio (V.R.) = $\frac{n_1}{n} \le 7_2$
- 30 pitches \leq center distance (C) \leq 50 pitches
- Pitch (p) should be even. Chain length (L)=2C + $\frac{T_1+T_2}{T_2}$ $\left(\frac{T_2T_1}{T_2T_1}\right)^2 \cdot \frac{1}{C}$

Roller chains – problem solving steps

1. Specify a service factor and compute the design power.

$$= 1.25$$
, for variable

$$= 1.5$$
, for heavy sho

Lubrication factor $(K_2) = 0.8$, for continuous lubrication

Load factor (K_1)

Rating factor (K_3)

- = 1, for drop lubrication
- = 1.5, for periodic lubrication
- = 1, for 8 hours per day
- = 1.25, for 16 hours per day
- = 1.5, for continuous service

Multiple strand factor $(1,2,3) - K_m = 1.7, 2.5, 3.3 - P_{+}/K_m$

ad load with mild shock ck loads

- 2. Compute the velocity ratio. V.R. = n_1/n_2
- 3. Select the chain pitch, and rpm of smaller sprocket.

Speed of	Power (kW)							
smaller sprocket or pinion (r.p.m.)	06 B	08 B	10 B	12 B	16 B			
100	0.25	0.64	1.18	2.01	4.83			
200	0.47	1.18	2.19	3.75	8.94			
300	0.61	1.70	3.15	5.43	13.06			
500	1.09	2.72	5.01	8.53	20.57			
700	1.48	3.66	6.71	11.63	27.73			
1000	2.03	5.09	8.97	15.65	34.89			
1400	2.73	6.81	11.67	18.15	38.47			
1800	3.44	8.10	13.03	19.85	—			
2000	3.80	8.67	13.49	20.57	_			

Table 21.4. Power rating (in kW) of simple roller chain.

Table

Roller chains - Calculation

Table 17-20	Sprocket			ANSI Cha	in Numbe	-	
Rated Horsepower	rev/min	25	35	40	41	50	60
Capacity of Single-							
Strand Single-Pitch	50	0.05	0.16	0.37	0.20	0.72	1.24
Roller Chain for a	100	0.09	0.29	0.69	0.38	1.34	2.31
17-Tooth Sprocket	150	0.13*	0.41*	0.99*	0.55*	1.92*	3.32
Source: Compiled from ANSI	200	0.16*	0.54*	1.29	0.71	2.50	4.30
B29.1-1975 information	300	0.23	0.78	1.85	1.02	3.61	6.20
only section, and from	400	0.30*	1.01*	2.40	1.32	4.67	8.03
D29.9-1950.	500	0.37	1.24	2.93	1.61	5.71	9.81
	600	0.44*	1.46*	3.45*	1.90*	6.72*	11.6
	700	0.50	1.68	3.97	2.18	7.73	13.3
	800	0.56*	1.89*	4.48*	2.46*	8.71*	15.0
	900	0.62	2.10	4.98	2.74	9.69	16.7
	1000	0.68*	2.31*	5.48	3.01	10.7	18.3
	1200	0.81	2.73	6.45	3.29	12.6	21.6
	1400	0.93*	3.13*	7.41	2.61	14.4	18.1
	1600	1.05*	3.53*	8.36	2.14	12.8	14.8
	1800	1.16	3.93	8.96	1.79	10.7	12.4
	2000	1.27*	4.32*	7.72*	1.52*	9.23*	10.6
	2500	1.56	5.28	5.51*	1.10*	6.58*	7.57
	3000	1.84	5.64	4.17	0.83	4.98	5.76
	Туре А		Тур	e B		Тур	e C

4. Number of teeth of small sprocket. Table 21.5. Number of teeth on the smaller sprocket.

Type of chain		Number of teeth at velocity ratio						
	1	2	3	4	5	6		
Roller	31	27	25	23	21	17		
Silent	40	35	31	27	23	19		

5. Pitch of the chain

Table 21.1. Characteristics of roller chains according to IS: 2403 - 1991.

ISO Chain	Pitch (p) mm	Roller diameter	Width between inner plates	Transverse 1 pitch		reaking load (kN) Minimum		
number		$(d_1) mm$	$(b_1) mm$	(p_1) mm	Simple	Duplex	Triplex	
		Maximum	Maximum					
05 B	8.00	5.00	3.00	5.64	4.4	7.8	11.1	
06 B	9.525	6.35	5.72	10.24	8.9	16.9	24.9	
08 B	12.70	8.51	7.75	13.92	17.8	31.1	44.5	
10 B	15.875	10.16	9.65	16.59	22.2	44.5	66.7	
12 B	19.05	12.07	11.68	19.46	28.9	57.8	86.7	
16 B	25.4	15.88	17.02	31.88	42.3	84.5	126.8	
20 B	31.75	19.05	19.56	36.45	64.5	129	193.5	

Table 21.1. Characteristics of roller chains according to IS: 2403 - 1991.

ISO Chain	Pitch (p) mm	Roller diameter	Width between inner plates	Transverse pitch	Breaking load (kN) Minimum		0
number		$(d_1) mm$	$(b_1) mm$	(p_1) mm	Simple	Duplex	Triplex
		Maximum	Maximum				
05 B	8.00	5.00	3.00	5.64	4.4	7.8	11.1
06 B	9.525	6.35	5.72	10.24	8.9	16.9	24.9
08 B	12.70	8.51	7.75	13.92	17.8	31.1	44.5
10 B	15.875	10.16	9.65	16.59	22.2	44.5	66.7
12 B	19.05	12.07	11.68	19.46	28.9	57.8	86.7
16 B	25.4	15.88	17.02	31.88	42.3	84.5	126.8
20 B	31.75	19.05	19.56	36.45	64.5	129	193.5

- Compute number of teeth of larger sprocket. 6. $T_2 = T_1$ V.R (check in catalogue)
 - 7. Compute the actual expected output speed

$$n_2 = n_1 (T_1/T_2)$$

8. Compute the pitch diameters of the sprockets.

$$D_{1 2} - \frac{p p}{\sin(180^{\%}T_{1})\sin(180^{\%}T_{2})} D =$$
9. Compute the length of the chain (L).

10. Corrected center distance. $C = \frac{1}{4} \left[L^{+} T_{2} T_{1} + T_{2} T_{1} + T_{2} + L \right] \left(- \frac{1}{2} T_{1} + T_{2} + L \right)^{2} \left(- \frac{1}{2} T_{1} + T_{2} + T_{2} + L \right)^{2} \left(- \frac{1}{2} T_{1} + T_{2} + T_{2} + L \right)^{2} \left(- \frac{1}{2} T_{1} + T_{2} + T_{$

11. Compute the angle of wrap of the chain for each sprocket

$$8_1 = 180^{\circ} - 2.\sin^{-1}$$
 [(D₂-D
8₂ = 180° + 2.sin⁻¹ [(D₂-D

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

$$\frac{2}{-8\cdot\left(\frac{T_2-T_1}{2n}\right)}$$

 D_{1}) /2C] D_{1}) /2C]

Design a chain drive for a heavily loaded coal conveyor to be driven by a gasoline engine through a mechanical drive. The input speed will be 900 rpm, and the desired output speed is 230 to 240 rpm. The conveyor requires 15.0 hp. (variable load with mild shock, 20 hr)

1.
$$K_s = 1.25(.8)(1.4) = 1.4$$
; $P_t = K_s \times P = 1.4 \times 15 = 21$

2. V.R. =
$$n_1/n_2 = 900/235 = 3.83$$

3. P₁ = 15hp = 21hp x 0.7456 kW/hp = 15.6576kW

CHAIN DRIVE COMPONENTS & DESIGN /R2019-Machine Design/AGRI/SNSCT

.hp

3. Select the chain pitch, and rpm of smaller sprocket.

Table 21.4. Power rating (in kW) of simple roller chain.

S	Speed of	Power (kW)							
sproc	smaller ket or pinion (r.p.m.)	06 B	08 B	10 B	12 B	16 B			
	100	0.25	0.64	1.18	2.01	4.83			
	200	0.47	1.18	2.19	3.75	8.94			
	300	0.61	1.70	3.15	5.43	13.06			
	500	1.09	2.72	5.01	8.53	20.57			
	700	1.48	3.66	6.71	11.63	27.73			
	1000	2.03	5.09	8.97	15.65	34.89			
	1400	2.73	6.81	11.67	18.15	38.47			
	1800	3.44	8.10	13.03	19.85	-			
	2000	3.80	8.67	13.49	20.57	-			

4. Number of teeth on sprockets.

Table 21.5. Number of teeth on the smaller sprocket.

Type of chain		Number of teeth at velocity ratio						
	1	2	3	4	5	6		
Roller	31	27	25	T 23	21	17		
Silent	40	35	31	27	23	19		

5.Pitch Table 21.1. Characteristics of roller chains according to IS: 2403 — 1991.

ISO Chain	Pitch (p) mm	Roller diameter	Width between inner plates	Transverse pitch	Bre	eaking load (kN Minimum	0
number		$(d_1) mm$	(<i>b</i> ₁) <i>mm</i>	(p_1) mm	Simple	Duplex	Triplex
		Maximum	Maximum				
05 B	8.00	5.00	3.00	5.64	4.4	7.8	11.1
06 B	9.525	6.35	5.72	10.24	8.9	16.9	24.9
08 B	12.70	8.51	7.75	13.92	17.8	31.1	44.5
10 B	15.875	10.16	9.65	16.59	22.2	44.5	66.7
12 BD =	19.05	12.07	11.68	19.46	28.9	57.8	86.7
16 B	25.4	15.88	17.02	31.88	42.3	84.5	126.8
20 B	31.75	19.05	19.56	36.45	64.5	129	193.5

6.
$$T_2 = T_1 \times V.R = 23 \times 3.83 = 88.09 = 89$$

7.
$$n_2 = n_1 x (T_1/T_2) = 900(23/89) = 232.58 rpm$$

Range given 230-240 – OK

8.
$$D_1 = {p - \frac{19.05}{\sin(180^{\%}T_1)}} = \frac{139.902 \text{mm}}{\sin(180^{\%}23)}$$

 $D_2 = {p - \frac{19.05}{\sin(180^{\%}T_1)}} = \frac{139.902 \text{mm}}{\sin(180^{\%}23)}$
 $D_2 = \frac{19.05}{\sin(180^{\%}T_2)}} = \frac{139.902 \text{mm}}{\sin(180^{\%}89)}$

9. Length of the chain

C = 40 pitch(30 to 50 is recommended) $L = 2C + \frac{T_1 + T_2}{2} + \left(\frac{T_2 - T_1}{2\pi}\right)^2 \cdot \frac{1}{C}$ L = 138.757 pitch = 140 pitches (even recommended) L = 140(19.05) = 2667 mm

Corrected center distance

$$C = \frac{1}{4} \cdot \left[L - \frac{T_1 + T_2}{2} + \sqrt{\left(L - \frac{T_1 + T_2}{2} \right)^2 - 8 \cdot \left(\frac{T_2 - T_1}{2\pi} \right)^2} \right]$$

C = 40.64 pitch
C = 40.64(19.05) = 774.248mm

10. Angle of wrap

 $\theta_1 = 180^{\circ} - 2.sin^{-1}[(D_2 - D_1)/2C] = 175.114^{\circ}$ $\theta_2 = 180^{\circ} + 2. sin^{-1}[(D_2 - D_1)/2C] = 184.885^{\circ}$

REFERENCES

- 1. Khurmi, R.S. and Gupta, J.S.2001, A textbook of machine design. Eurasia Publi. House, Delhi.
- R. G. Budynass, J.K. Nisbett, 2005, Shigley's Mechanical Engineering Design, New York –USA, McGraw Hill.
- 3. onesmartclick.com/engineering/machine-design.html
- 4. https://www.youtube.com/watch?v=CwiaS075YzQ
- 5. https://www.youtube.com/watch?v=7Aj2q6fsC5M

design. Eurasia Publi. House, Delhi. Ingineering Design,

