

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

Extended surfaces (00) Fins.

To. The

For the object

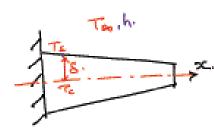
Continue 2

O To Transport

. Additional area is addedite increase the surface area.

Q=hAAT)

AT - AT


Say example: To = 100°C To = 10°C.

Treduces along the length of fin

AAT 1 -> Use of fin is effective.

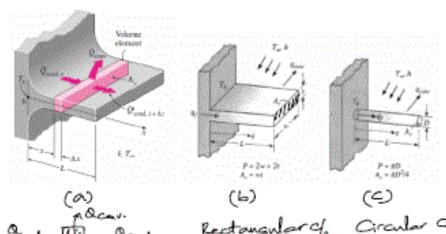
AAT 1 -> Use of fin is not boneficial.

I-D Analysis of fins. Why?

 $V_{ans} \sim k_{fw} (T_c - T_s) \over 8$ $\sim h(T_s - T_{so})$

So. $\frac{k_{fin}(T_c-T_s)}{s} \sim h(T_s-T_{oo})$

DEPARTMENT OF MECHANICAL ENGINEERING


16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

1-D analysis is possible if. (Tc-Tc) << (Ts-To)

Bist No (Bi)

Riot Number Bi = 8/4A = Conductive resistance.

Derivation of 1-D for-equation with uniform C/s T(y) = ? T(y) is reglected.

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION **Topic - Extended Surfaces**

Rose is @ temperature To', ex Th'

For Standy state with no heat generation Em= End (Egan & Estado)

Ruter of heat Roots of Leader to Rente of Condition Co. Count (Condition) head commented from classes

Cond = - KA dT (Former)) A= c/s area.

and x + cox = - KA dT - KA of T To - Enced Temp

@ => - KA dI - KA dT ART HPAX dT

(financial) K=Thomas KA=ofT - hP (T-Ton)=0 Condicionity

$$\frac{d^2T}{dx^2} - \frac{hP}{kA_c}(T - Ta) = 0$$

$$\frac{d^2T}{dx^2} = \frac{hP}{kA_c}$$

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION

Topic - Extended Surfaces Let, OF To Too. V -- No=dT Dinewy house (Linewy house (New houses) ←0=0 miles General solution is of the for, d(x)= C, e xx + C, e x -> (8) C. R.C. are the constant determed from R.C. Specified temperature (a) Specified temperature > مس کتاستاند هـــ (b) Negligible heat loss (c) Convection (d) Convection and radiation at the and for temperature is equal to the ambient temperature: @2=0 8=Tb-Tb=0 T=Tb, @2=80 8=Tb-Tb=0 T=Tbo. (1)

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

Substituting CIRC2 M says @

Hent flow through the for is your by; $B = \int h P(T-Tou) dx = -1 cA \frac{dT}{dx} \Big|_{X=0}$

Substituting for (T-To) from B, we get.

On h.P (Tu-To) Emx.dx.

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION

Topic - Extended Surfaces

Corres: - In of finite length & and mailated

(xhartyrn).

(xhar

From (condition 0 -C,+C, -> (some).

8= C, etc. +C, EME.

do = m.C.eme-m.geme

ML= constants

m= The

me= hP

From @ complition, we get

0 = mgemb-mczemb.

M.C. enl. MC2 Enl

C, = Com

 $C_1 = C_2 \tilde{\epsilon}^{2mL} \longrightarrow \mathfrak{D}$ Let, $C_1 + C_2 = \mathfrak{D}_{b}$

C, E = + C, = Ob.

\

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

Heat transfer through the fin

$$0 = -kA \cdot \frac{dT}{dx}|_{X \in D} = \int hP(T-To)dx.$$

$$\frac{dT}{dx} = \left[-\frac{meSinhm(Lx)}{conhmL} \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = \partial b \left[Nix SinhmL \right] = \left[m. tonhmL \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = \partial b \left[Nix SinhmL \right] = \left[m. tonhmL \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = \partial b \left[Nix SinhmL \right] = \left[m. tonhmL \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = \partial b \left[Nix SinhmL \right] = \left[m. tonhmL \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = -kA \left[-m. tonhmL \right] O_{D}.$$

$$\frac{dT}{dx}|_{X \in D} = -kA \left[nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -kA \left(nix insulated \left(Connection \right) O(x). C_{D} = -$$

10 = m C2 = m. C2 = m. C2 = m.

- Ky [mclemen comment] = hot [clemencom]

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION

Topic - Extended Surfaces

substituting for C2 from equation (C2-02-C)

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION

Topic - Extended Surfaces

$$c_2 = \frac{\partial_L e^{mL} \left(1 + \frac{h}{mk} \right)}{\left(e^{mL} + \bar{e}^{mL} \right) + \frac{h}{mk} \left(e^{mL} - \bar{e}^{mL} \right)} \rightarrow \mathbb{Z}$$

substituting for CISCIN the rolling eqn. $8(x) = C_1 e^{mx} + C_2 e^{mx}$

Hend binefor is given by.

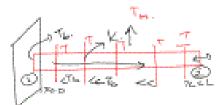
Q = - kA-dof = hA (T-To) |_x=0.

200

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

DEPARTMENT OF MECHANICAL ENGINEERING


16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION **Topic - Extended Surfaces**

For enforcements!

It is the rates of the energy transferred through an actual for to that transferred through an ideal fin.

(8) Ideal for is one that is made of a perfect (ox) infinite conductor material. A perfect andictor how on signite themal conductivity so that the extre fin is at the lowe material temperature.

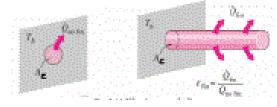
7 - Wasterd = hA(T-Ton) Question

Between point O & temperature alogo is.

negligities, if KTM.

... Heat transfer through any for conte without

Wasterd = E. h. Afric (The Ten)



DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer — **UNIT I - CONDUCTION**Topic - Extended Surfaces

Fin Effectioners: (E)

The is the votes of fin heat transfer and the heat transfer without the fin.

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – UNIT I - CONDUCTION **Topic - Extended Surfaces**

If the for is long enough, ML>2, touched -> 1 and herce it can be considered as infinite fin : G = KF = K P

Ohnometrano:

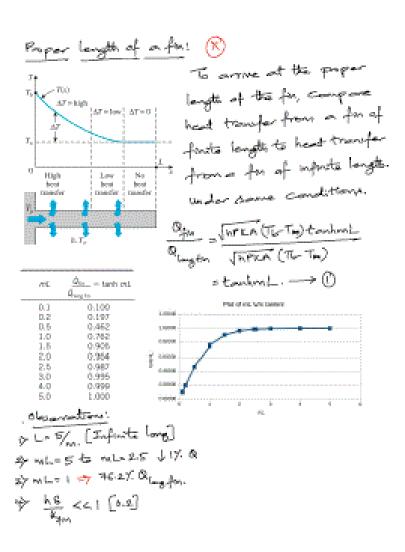
is to enhance heat transfer exhauld be greater then mit (621)

\$ If 6<1, the for would have no purpose our it would some as an inhibition. a) To morene "6", the fire material should have

higher termal conductivity for a losser heat transfer coefficient h! For an higher heat transfer coefficient "h", it is not necessary to enhance head transfer by addition of four.

W= J hr andrient condition. () freed k. menter wh. () freed.

1 = 0 A - 10t P-2(10.44)


(3) Fig. A = 102 P = 2(20) = 410.

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer — **UNIT I - CONDUCTION**Topic - Extended Surfaces

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

Extended surfaces:

A copper pin fin of 0.25 cm dia, protrudes from a wall at 95°C into ambient air at 25°C. The heat transfer is mainly by free convection with heat transfer coefficient value of 10 W/m² - K. Calculate the heat loss assuming that the fin is infinitely long. For copper, take k=395 W/m·K.

2. Aluminium square fins (0.5 mm X 0.5 mm) of 1 cm length are provided on the surface of an electronic semi-conductor device to carry 46 mW of energy generated by the electronic device and the temperature at the surface of the device should not exceed 80°C. The temperature of the surrounding medium is 40°C, thermal conductivity of the aluminium is 190 W/m-K and heat transfer coefficient is 12.5 W/m² – K. Find the number of fins required to carry out the above duty. Neglect the heat loss from the end of the fin.

Sol: Given:
$$A = 0.6 \times 0.5 \times 0.5 \times 0.7$$
. $L = 1 \text{cm}$; $Q = 46 \text{m W}$. $T_{15} = 80^{\circ} \text{c}$. $T_{25} = 40^{\circ} \text{c}$; $K = 190 \text{ M/m-k}$. $h = 12.5 \text{ M/m-k}$. $T_{25} = 40^{\circ} \text{c}$. $M = 12.5 \text{ M/m-k}$. $M = 12.5$

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

Single Ofm =
$$\int NPKA \ tanh NL (Tb-Too)$$

= $\int 12.5 \times 2 \times 15^{1} \times 190 \times 0.25 \times 15^{6} \times 0.225 \ (80-40)$
Ofm = $9-81 \times 10^{3} \text{ W}$.
 $Q = N \times Q_{fn} \Rightarrow N = \frac{Q}{Q_{fn}} = \frac{46 \times 10^{4}}{9-81 \times 10^{4}} \simeq 5$

3. A cylinder 5 cm diameter and 50 cm long is provided with 14 longitudinal straight fins of 1 mm thick and 2.5 mm height. Calculate the heat loss from the cylinder per second if the surface temperature of the cylinder is 200°C

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

4. To determine the thermal conductivity of a long, solid 2.5 cm diameter rod, one half of the rod was inserted to a furnace while the other half was projecting into air at 27°C. After steady state had been reached, the temperatures at two points 7.6 cm apart were measured and found to be 126°C and 91°C, respectively. The heat transfer coefficient over the surface of the rod exposed to air was estimated to be 22.7W/m² - K. What is the thermal conductivity of the rod.

Known:
$$d = 42.5 \times 10^2 \text{ m}$$
; $T_{40} = 27^{\circ} \text{ c}$; $T_{A} = 126^{\circ} \text{ c}$; $T_{C} = 91^{\circ} \text{ c}$; $X_{A-E} = 7.6 \text{ cm}$; $h = 22.7 \text{ W/m-k}$.

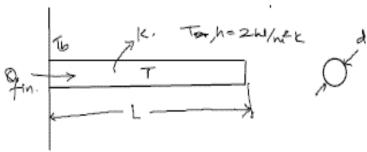
To find: $K = ?$

Sketch

Then $T_{C} = 91^{\circ} \text{ c}$

Then T_{C

DEPARTMENT OF MECHANICAL ENGINEERING


16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

- 5. 30 circular fins of 12 mm diameter and length 500 mm is used to remove heat from the surface maintained at 100°C to ambient conditions at 25°C. If the thermal conductivity of the fin material is 250 W/m-K and the corresponding heat transfer coefficient to be 2W/m²K. Assuming the fins to be short with convective end. Calculate
 - (a) Temperature at a distance of 250 mm from the surface along the fin.
 - (b) Total heat transfer through the fins
 - (c) If the heat transfer coefficient is varient in steps of 10 from a value of 2 W/m²/4 to 100 W/m²/4, what would be the change in heat transfer through the fins.

Sol: Given:

L=500MM, K=250W/mk; d=12MM, N=30, h=2W/2-K
Tb=100° ci Tao=25° ci. Tofind: Touson=? Qfm=?

2fin=? Q when h=2 to 100 W/m²k (in steps of 10)=?

Perimeter P= xd=x(12x103)=87.7x15 m.

mL= 1.63x5mx10 = 0.816.

tanhmL = 0,679, 21

DEPARTMENT OF MECHANICAL ENGINEERING

16ME306/ Heat and Mass Transfer – **UNIT I - CONDUCTION**Topic - Extended Surfaces

@ X=250,~W

T(2c) = 59.71 degree C

Q_{fin} =
$$\sqrt{2 \times 37.7 \times 10^3 \times 250 \times 1.13 \times 10^4}$$
 tenh(0.815) + $\frac{2}{1.63 \times 2.0}$ (1+ $\frac{2}{1.63 \times 2.0}$ tenh(0.815))

@ one excel sheet to find the Qfm, for.

h very new from 2 to los (steps of 10), and plot

Q vs. h.