UNIT I INTRODUCTION

1.1 NOTION OF AN ALGORITHM

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

FIGURE 1.1 The notion of the algorithm.

It is a step by step procedure with the input to solve the problem in a finite amount of time to obtain the required output.

The notion of the algorithm illustrates some important points:

- The non-ambiguity requirement for each step of an algorithm cannot be compromised.
- The range of inputs for which an algorithm works has to be specified carefully.
- The same algorithm can be represented in several different ways.
- There may exist several algorithms for solving the same problem.
- Algorithms for the same problem can be based on very different ideas and can solve the problem with dramatically different speeds.

Characteristics of an algorithm:

Input: Zero / more quantities are externally supplied.
Output: At least one quantity is produced.
Definiteness: Each instruction is clear and unambiguous.
Finiteness: If the instructions of an algorithm is traced then for all cases the algorithm must terminates after a finite number of steps.
Efficiency: Every instruction must be very basic and runs in short time.

Steps for writing an algorithm:

1. An algorithm is a procedure. It has two parts; the first part is head and the second part is body.
2. The Head section consists of keyword Algorithm and Name of the algorithm with parameter list. E.g. Algorithm name1(p1, p2,...,p3) The head section also has the following:

//Problem Description:
 //Input:
 //Output:

3. In the body of an algorithm various programming constructs like if, for, while and somestatements like assignments are used.
4. The compound statements may be enclosed with \{and \} brackets. if, for, while can beclosed by endif, endfor, endwhile respectively. Proper indention is must for block.
5. Comments are written using // at the beginning.
6. The identifier should begin by a letter and not by digit. It contains alpha numeric lettersafter first letter. No need to mention data types.
7. The left arrow " \leftarrow " used as assignment operator. E.g. v $\leftarrow 10$
8. Boolean operators (TRUE, FALSE), Logical operators (AND, OR, NOT) and Relational operators ($\langle,\langle=,>,>=,=, \neq,\langle>$) are also used.
9. Input and Output can be done using read and write.
10. Array[], if then else condition, branch and loop can be also used in algorithm.

Example:

The greatest common divisor(GCD) of two nonnegative integers m and n (not-bothzero), denoted $\operatorname{gcd}(m, n)$, is defined as the largest integer that divides both m and n evenly, i.e., with a remainder of zero.

Euclid's algorithm is based on applying repeatedly the equality $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod$ n), where $m \bmod n$ is the remainder of the division of m by n, until $m \bmod n$ is equal to 0 . Since $\operatorname{gcd}(m, 0)=m$, the last value of m is also the greatest common divisor of the initial m and n.
$\operatorname{gcd}(60,24)$ can be computed as follows: $\operatorname{gcd}(60,24)=\operatorname{gcd}(24,12)=\operatorname{gcd}(12,0)=12$.

Euclid's algorithm for computing $\operatorname{gcd}(m, n)$ in simple steps

Step 1 If $n=0$, return the value of m as the answer and stop; otherwise, proceed to Step 2.
Step 2 Divide m by n and assign the value of the remainder to r.
Step 3 Assign the value of n to m and the value of r to n. Go to Step 1 .

Euclid's algorithm for computing $\operatorname{gcd}(m, n)$ expressed in pseudocode ALGORITHM Euclid_gcd(m, n)

```
//Computes }\operatorname{gcd}(m,n)\mathrm{ by Euclid's algorithm
//Input: Two nonnegative, not-both-zero integers m}\mathrm{ and }
//Output: Greatest common divisor of }m\mathrm{ and }
while }n\not=0\mathrm{ do
r
\leftarrow m
mod
n
m
n
n\leftarrowr
return m
```

