
SNS College of Technology, Coimbatore-35.
(An Autonomous Institution)
Internal Assessment -III
Academic Year 2022-2023(Odd)
Third Semester
Department of Mathematics
19MAT201- Transforms and Partial Differential Equations

Time: $\mathbf{1 . 3 0}$ Hours
Maximum Marks: 50

PART-A (5 $\times 2=10$ MARKS $)$ ANSWER ALL QUESTIONS				BLooms
1.		Find the nature of pde $3 u_{x x}+4 u_{x y}+6 u_{y y}-2 u_{x}-u=0$	CO4	(Rem)
2.		What are the various possible solutions of one dimensional heat equations?	CO4	(Und)
3.		A rod 10 cm long has its ends A and B kept at $20^{\circ} \mathrm{c}$ and $70^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Find the steady temperature in the rod.	CO4	(App)
4.		Form the Difference Equation $y=A 2^{n}$	CO5	(App)
5.		State the initial and finial value theorem	CO5	(App)
PART -B ($\mathbf{1 3 + 1 3 + 1 4 = 4 0 ~ M A R K S) ~}$ ANSWER ALL QUESTIONS				
6.	a)	A rod of length 30 cm has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state conditions prevail. The temperature at each end is then suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so. Find the resulting temperature function $\mathrm{u}(\mathrm{x}, \mathrm{t}) \mathrm{x}=0$ at A .	CO4	(App) (13)
		(or)		
	b)	A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially at rest in its equilibrium position. If its set vibrating string giving each point a velocity $y=\lambda x(l-x)$. Find the displacement of any point on the string at a distance of x from one end at a time t .	CO4	(App) (13)

7.	a)	Solve the difference equation using z transform $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n} \text { given that } y_{0}=y_{1}=0$	CO5	$\begin{gathered} (\mathrm{App}) \\ (13) \end{gathered}$
		(or)		
	b) i) ii)	Find $z(\cos a t)$ and $z($ sinat $)$ Using convolution theorem find $Z^{-1}\left[\frac{z^{2}}{(z-a)(z-b)}\right]$	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} \end{aligned}$	(Ana) (7) (App) (6)
8.	a) i)	A string is stretched and fastened at two points $\mathrm{x}=0$ and $\mathrm{x}=1$ apart. Motion is started by displacing the string into the form $y=k\left(l x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at a time t.	CO4	$\begin{gathered} \text { (App) } \\ 14 \end{gathered}$
		(or)		
	b) i) ii)	Find $z^{-1}\left[\frac{z^{2}}{(z+2)\left(z^{2}+4\right)}\right]$ using Partial fraction method Elaborate the applications of Z-Transform in real life Engineering and Industry fields.	$\begin{aligned} & \mathrm{CO} 5 \\ & \mathrm{CO} 5 \end{aligned}$	(Ana) (7) (App) (7)

