

SNS College of Technology, Coimbatore-35.
(An Autonomous Institution)
Internal Assessment -I
Academic Year 2022-2023 (Odd)
Third Semester
Department of Mathematics
19MAT201- Transforms and Partial Differential Equations

1. State Dirichlet's Condition.
2. Determine the RMS value of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}-x^{2}$ in $-1<x<1$.
3. Define even function with an example.
4. Determine whether the graph is periodic or not. Justify.

State Fourier Transform pair.

PART -B (2 x13= 26 MARKS)
 ANSWER ALL QUESTIONS

6. a)i) Determine the Fourier Series for the function

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lc}
1+\frac{2 x}{\pi}, & -\pi<x<0 \tag{CO1}\\
1-\frac{2 x}{\pi}, & 0<x<\pi
\end{array}\right.
$$

ii) Express $f(x)=x, 0<x<l$ as a Half range Fourier Sine Series of CO1 periodicity $2 l$.
b) Find the Fourier Series of $\mathrm{f}(\mathrm{x})=x^{2}$ in $-\pi<x<\pi$ and simplify the values to
i. $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$

CO1
ii. $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90}$
7. a) Determine the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}1-|x| & ,|x|<1 \\ 0 & ,|x|>1\end{array}\right.$, and deduce that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\frac{\pi}{2}$ and $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t=\frac{\pi}{3}$.

(or)

b) Show that the Fourier transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}a^{2}-x^{2}, & |x|<a \\ 0, & |x|>a\end{array}\right.$, where

$$
\begin{align*}
& \text { a>0 is } 2 \sqrt{\frac{2}{\pi}}\left[\frac{\sin a s-a s \cos a s}{s^{3}}\right] \text { and deduce that } \tag{CO 2}\\
& \int_{0}^{\infty} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{\pi}{4} \text { and } \int_{0}^{\infty}\left(\frac{\sin t-t \cos t}{t^{3}}\right)^{2} d t=\frac{\pi}{15} \tag{13}
\end{align*}
$$

PART - C (1x14 = $\mathbf{1 4}$ MARKS)

8. a)i) Apply Harmonic Analysis to find the Fourier Series upto second harmonic of period 2π for $y=f(x)$ defined in $(0,2 \pi)$ by means of the values given below

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

ii) Obtain the Fourier Series for the function $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ in $-\pi<x<\pi$.
b)i) Find the Fourier transform of the function $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x|>a\end{array}\right.$
ii) Bring out the applications of Fourier transforms in various Engineering fields.

Rem/Und: Remember/ Understand
App: Apply Ana: Analyze
Eva: Evaluate
Cre: Create

