Reg.No:				
Reg.No:				

SNS College of Technology,Coimbatore-35. (An Autonomous Institution) Internal Assessment -I Academic Year 2022-2023 (Odd) Third Semester Department of Mathematics 19MAT201- Transforms and Partial Differential Equations

Time: 1.30 Hours

Maximum Marks: 50

	PART – A (5 x 2 = 10 MARKS) ANSWER ALL QUESTIONS	CO	BLOOMS
1.	State Dirichlet's Condition.	CO1	(Rem)
2.	Determine the RMS value of the function $f(x) = x - x^2$ in $-1 < x < 1$.	CO1	(Und)
3.	Define even function with an example.	CO1	(Und)
4.	Determine whether the graph is periodic or not. Justify. $\int_{0}^{y} \int_{0}^{y} \int_{0}^$	CO1	(Und)
5.	State Fourier Transform pair.	CO2	(Rem)

PART –B (2 x13= 26 MARKS) ANSWER ALL QUESTIONS

6. a)i) Determine the Fourier Series for the function

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, & 0 < x < \pi \end{cases}$$
CO1 (App)
(7)

ii) Express f(x) = x, 0 < x < l as a Half range Fourier Sine Series of CO1 (App) (6)

b) Find the Fourier Series of $f(x) = x^2$ in $-\pi < x < \pi$ and simplify the values to

i.
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$
 CO1 (App)
ii. $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$

7. a) Determine the Fourier transform of
$$f(x) = \begin{cases} 1 - |x|, |x| < 1 \\ 0, |x| > 1 \end{cases}$$
 and

deduce that
$$\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$$
 and $\int_0^\infty \left(\frac{\sin t}{t}\right)^4 dt = \frac{\pi}{3}$. CO2 (Ana) (13)

(or)

b) Show that the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, |x| < a \\ 0, & |x| > a \end{cases}$, where

a>0 is
$$2\sqrt{\frac{2}{\pi}} \left[\frac{\sin as - as \cos as}{s^3} \right]$$
 and deduce that CO2 (Ana)
(13)

$$\int_0^\infty \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4} \text{ and } \int_0^\infty \left(\frac{\sin t - t \cos t}{t^3}\right)^2 dt = \frac{\pi}{15}$$

PART - C (1x14 = 14 MARKS)

8. a)i) Apply Harmonic Analysis to find the Fourier Series upto second harmonic of period 2π for y = f(x) defined in $(0,2\pi)$ by means of the values given below (7)

Х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

ii) Obtain the Fourier Series for the function f(x) = |x| in $-\pi < x < \pi$. CO1 (Ana) (or)

- b)i) Find the Fourier transform of the function $f(x) = \begin{cases} 1, |x| < a \\ 0, |x| > a \end{cases}$ CO2 (App) (7)
- ii) Bring out the applications of Fourier transforms in various CO2 (App) Engineering fields. (7)

Rem/Und: Remember/ Understand **App:** Apply **Ana:** Analyze **Eva:** Evaluate **Cre:** Create