Eigenvalues and Eigenvectors

Definition: Matrix

A system of $m n$ numbers(elements) arranged in a rectangular arrangement along m rows and n columns and bounded by the brackets [] or () is called an m by matrix, which is written as $m \times n$ matrix

$$
\mathrm{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & . . & . . & a_{1 n} \\
a_{21} & a_{22} & . . & . . & a_{2 n} \\
\ldots & . . & . . & . . & . . \\
. . & . . & . . & . . & . . \\
a_{m 1} & a_{m 2} & . . & . . & a_{m n}
\end{array}\right]
$$

Characteristic polynomial

The determinant $|\mathrm{A}-\lambda I|$ when expanded will give a polynomial, which we call as characteristic polynomial of matrix A.

Definition: Eigenvalues

$\mathrm{A}=\left[a_{i j}\right]$ be a square matrix.
The characteristic equation of A is $|\mathrm{A}-\lambda I|=0$.
The roots of the characteristic equation are called Eigenvalues of A.

Definition: Eigenvectors

$\mathrm{A}=\left[a_{i j}\right]$ be a square matrix of order ' n '
If there exist a non zero vector $\mathrm{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]$
such that $\mathrm{AX}=\lambda X$, then the vector X is called an Eigenvector of A corresponding to the Eigenvalue λ.

Method of finding characteristic equation of a $\mathbf{3 \times 3}$ matrix and $\mathbf{2 \times 2}$ matrix
The characteristic equation of a 3×3 matrix is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$
Where, $\mathrm{S} 1=$ sum of main diagonal elements.
$\mathrm{S}_{2}=$ sum of minor of main diagonal elements.
$S_{3}=\operatorname{Det}(A)=|A|$
The characteristic equation of a 2×2 matrix is $\lambda^{2}-S_{1} \lambda+S_{2}=0$
Where, $\mathrm{S}_{1}=$ sum of main diagonal elements.

$$
\mathrm{S}_{2}=\operatorname{Det}(\mathrm{A})=|\mathrm{A}|
$$

1. Find the characteristic equation of the matrix $\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{2}-S_{1} \lambda+S_{2}=0$

$$
\begin{aligned}
\mathrm{S}_{1} & =\text { sum of main diagonal elements } \\
& =1+2=3 \\
\mathrm{~S}_{2} & =\operatorname{Det}(\mathrm{A})=|\mathrm{A}| \\
& =\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right| \\
\mathrm{S}_{2} & =2-0=2
\end{aligned}
$$

The characteristic equation is $\lambda^{2}-3 \lambda+2=0$.
2. Find the characteristic equation of $\left(\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right)$

Solution:

The characteristic equation is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-S_{3}=0$

$$
\text { Where, } \quad \begin{aligned}
\mathrm{S}_{1} & =\text { sum of the main diagonal elements } \\
& =2+1-4=-1 \\
\mathrm{~S}_{2} & =\text { sum of minor of main diagonal elements } \\
& =\left|\begin{array}{cc}
1 & 3 \\
2 & -4
\end{array}\right|+\left|\begin{array}{cc}
2 & 1 \\
-5 & -4
\end{array}\right|+\left|\begin{array}{cc}
2 & -3 \\
3 & 1
\end{array}\right| \\
& =(-4-6)+(-8+5)+(2+9)=-10+(-3)+11=-2 \\
\mathrm{~S}_{3} & =\operatorname{Det}(\mathrm{A})=|\mathrm{A}| \\
& =\left|\begin{array}{ccc}
2 & -3 & 1 \\
3 & 1 & 3 \\
-5 & 2 & -4
\end{array}\right| \\
& =2(-4-6)-(-3)(-12+15)+1(6+5) \\
& =2(-10)+3(3)+1(11)=-20+9+11=0
\end{aligned}
$$

The characteristic equation is $\lambda^{3}+\lambda^{2}-2 \lambda=0$

