

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING

I YEAR - I SEM

UNIT 1 – Introduction to Problem Solving Techniques

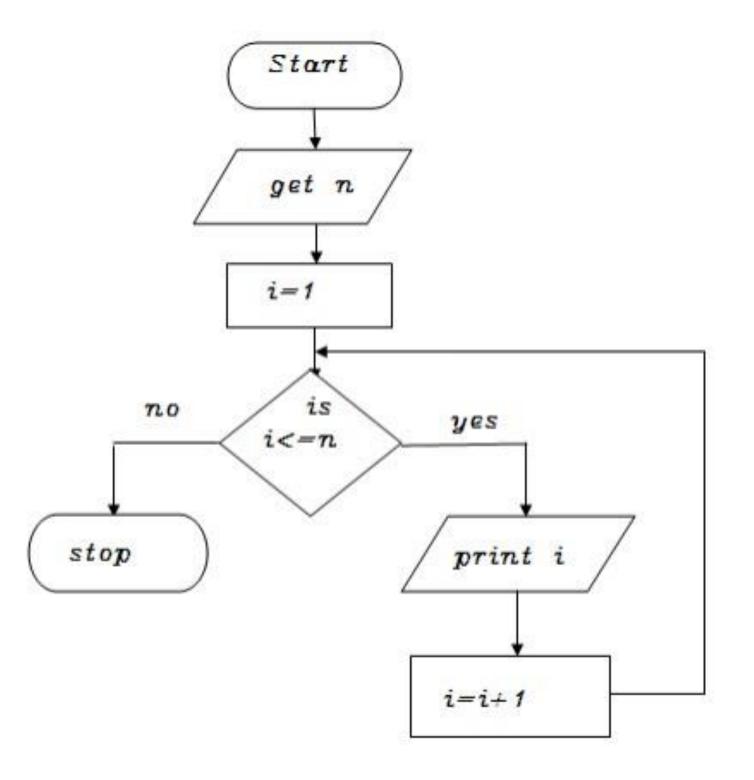
TOPIC 6 – Simple Strategies for Developing Algorithms

1/24/2023

SIMPLE STRATEGIES FOR DEVELOPING ALGORITHM

- They are two commonly used strategies used in developing algorithm
 - 1. Iteration
 - 2. Recursion

>ITERATION:


- The iteration is when a loop **repeatedly executes** till the controlling condition becomes false.
- The iteration is applied to the set of instructions which we want to get repeatedly executed.
- Iteration includes "initialization, condition, and execution" of statement within loop and update (increments and decrements) the control variable.
- A sequence of statements is executed until a specified condition is true is called iterations.
 - 1. for loop
 - 2. While loop

FOR & WHILE LOOP

Syntax for For:	Example: Print n natural numbers
	BEGIN
FOR(start-value to end-value) DO	GET n
statement	INITIALIZE <u>i</u> =1
ENDFOR	FOR (i<=n)DO
	PRINT i
	<u>i=i</u> +
	1
	ENDFOR
	END
Syntax for While:	Example: Print n natural numbers
Syntax for While:	Example: Print n natural numbers BEGIN
Syntax for While: WHILE (condition) DO	<u> </u>
	BEGIN
WHILE (condition) DO	BEGIN GET n
WHILE (condition) DO statement	BEGIN GET n INITIALIZE i=1
WHILE (condition) DO statement	BEGIN GET n INITIALIZE i=1 WHILE(i<=n) DO
WHILE (condition) DO statement	BEGIN GET n INITIALIZE i=1 WHILE(i<=n) DO PRINT i

RECURSION

> Recursions:

- A function that calls itself is known as recursion.
- Recursion is a process by which a function calls itself repeatedly until some specified condition has been satisfied.
- > Algorithm for factorial of n numbers using recursion
- ➤ Main function:

Step1: Start

Step2: Get n

Step3: call factorial(n)

Step4: print fact

Step5: Stop

➤ Sub function factorial(n):

Step1: if(n==1) then fact=1 return fact

Step2: else fact=n*factorial(n-1) and return fact

➤ Pseudo code for factorial using recursion:

Main function:

BEGIN

GET n

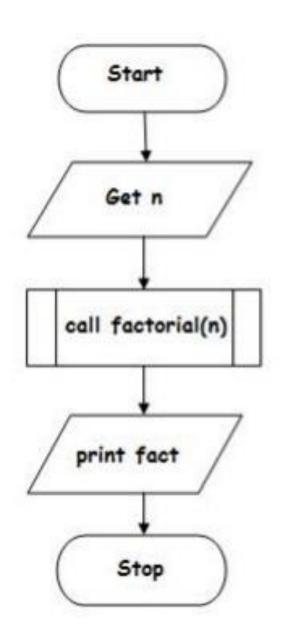
CALL

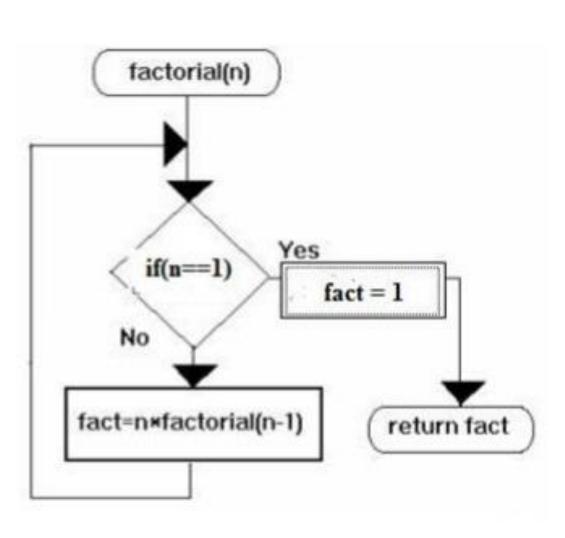
factorial(n)

PRINT fact

END

Sub function factorial(n):


IF(n==1) THEN


fact=1

RETURN fact

ELSE

RETURN fact = n * factorial (n - 1)

