

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

PROGRAMMING FOR PROBLEM SOLVING I YEAR - I SEM

UNIT 1 – Introduction to Problem Solving Techniques

TOPIC 5 – Algorithmic Problem Solving

ALGORITHMIC PROBLEM SOLVING

>Algorithmic problem solving is solving the problem that require the formulation of an algorithm for the solution.

Algorithm design and analysis process.

UNDERSTANDING THE PROBLEM

 \succ It is the process of **finding the input** of the problem that the algorithm solves.

- \triangleright It is very important to specify exactly the set of inputs the algorithm needs to handle.
- \triangleright A correct algorithm is not one that works most of the time, but one that works correctly for all legitimate inputs.
- Ascertaining the Capabilities of the Computational Device: • If the instructions are executed one after another, it is called **sequential algorithm** • If the instructions are executed concurrently, it is called **parallel algorithm**.

CHOOSING BETWEEN EXACT AND APPROXIMATE PROBLEM SOLVING

- \succ The next principal decision is to choose between solving the problem exactly or solving it approximately.
- > Based on this, the algorithms are classified as exact algorithm and approximation algorithm.
- \triangleright Deciding a data structure:
 - Data structure plays a vital role in designing and analysis the algorithms. ulletSome of the algorithm design techniques also depend on the structuring data
 - specifying a problem's instance.

Algorithm+ Data structure=programs.

ALGORITHM DESIGN TECHNIQUES

An algorithm design technique (or "strategy" or "paradigm") is a general approach to solving problems algorithmically that is applicable to a variety of problems from different areas of computing.

 \blacktriangleright Learning these techniques is of utmost importance for the following reasons. ≻First:

• They provide guidance for designing algorithms for new problems, Second:

• Algorithms are the cornerstone of computer science

METHODS OF SPECIFYING AN ALGORITHM

Pseudocode:

- Pseudocode is a mixture of a natural language and programming language-like constructs.
- Pseudocode is usually more precise than natural language, and its usage often yields ulletmore success in algorithm descriptions.
- In the earlier days of computing, the dominant vehicle for specifying algorithms was a ulletflowchart, a method of expressing an algorithm by a collection of connected geometric shapes containing descriptions of the algorithm's steps.

> **Programming language:**

- Programming language can be fed into an electronic computer directly. Instead, it needs to be converted into a computer program written in a particular computer language.
- We can look at such a program as yet another way of specifying the algorithm, although it is preferable to consider it as the algorithm's implementation.

PROVING AN ALGORITHM'S CORRECTNESS

 \triangleright Once an algorithm has been specified, you have to prove its correctness.

- > That is, you have to prove that the algorithm **yields a required result for every** legitimate input in a **finite amount of time.**
- \blacktriangleright A common technique for proving correctness is to use **mathematical induction**, because an algorithm's iterations provide a natural sequence of steps needed for such proofs.
- \succ It might be worth mentioning that although tracing the algorithm's performance for a few specific inputs can be a very worthwhile activity, it cannot prove the algorithm's correctness conclusively.
- \triangleright But in order to show that an algorithm is incorrect, you need just one instance of its input for which the algorithm fails.

CODING AN ALGORITHM

>Most algorithms are destined to be ultimately implemented as computer programs.

 \blacktriangleright Programming an algorithm presents both a peril and an opportunity.

- \triangleright A working program provides an additional opportunity in allowing an empirical analysis (Pattern and Observations) of the underlying algorithm.
- Such an analysis is based on timing the program on several inputs and then analyzing the results obtained.

ANALYZING AN ALGORITHM

	SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution			
	Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai			
	DEPARTMENT OF INFORMATION TECHNOLOGY			
	PROGRAMMING FOR PROBLEM SOLVING I YEAR - I SEM			
	UNIT 1 – Introduction to Problem Solving Techniques			•
	TOPIC 5 – Algorithmic Problem Solving			1NV
12/21/2022	Alg Prob Solving/ Prog. For Prob.Solving / Vikneshkumar.D/IT/SNSCT		1	1
Simpler algorithms are easier to understand and e				

Simple algorithms usually contain fewer bugs.

vestigated with

easier to program.

