

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

When the quadratic form $g = X^TA \times B$ when the quadratic form $g = X^TA \times B$ secluced to a canonical youn, it will contain only in terms, if early a is's'

Proton: The no. of the square terms in the convincal form is called a Inden of quadratic form B is denoted by p.

Agnature:

The difference of no of positive of non-positive (neg.) square terms is called the signature of quadratic form. Signature g = 2p - r.

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

Nature	This Ronk a Soulis	This's Evalues T	Theo' peinciple minors
y pushive definite	r=n & p=n n-no.g variables	All Evalues are positive	$B_1 = a_{11} , B_2 = a_{11} a_{12} $ $ B_n = A $ All $B_1, B_2 all positive$
1) Negativa definiti	v=n & p=o	All E. values are regertive	D, , B3 are regative B3, D4 one positive
3) puritive semi definit	7 x n 8 p=x	AII E. values oue >0 A atteast one E. value is zero	AU Pn>62 atleast one Pi=0
) Negative semi definits	Fan & p=0	All Evabues au £0 & atteast one Evabu is zero	c-iin Bn 20 8 atteast one Di=0
5) Indeput	In all others	tositive as well as negative e. values	In all other Cases

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

Find the nature of quadratic form

1) $6\pi^2 + 3\pi y^2 + 33^2 - 4\pi y - 2y3 + 43\pi$. $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 34 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ $P_1 = |b| = b > 0$ $D_2 = \begin{vmatrix} 6 & -2 \\ -2 & 34 \end{vmatrix} = 18 - 4 = 14 > 0$ $P_3 = \begin{vmatrix} 6 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 32 > 0$ Hence $P_1, P_2, P_3 > 0$ The eyn. quadratice forem is +ve definite.

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7 \end{bmatrix} = 6 - 1 = 5 > 0$$

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 7$$

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

3)
$$-\frac{9}{1^2} = \frac{2}{10^2} = \frac{2}{3} = \frac{2}{3}$$

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$B_1 = \begin{vmatrix} -1 & 1 \\ 0 & -2 \end{vmatrix} = \frac{2}{3} =$$

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

Reduce the quadratic form 8n2+fy2+33-12ny-8y3+4nz Into canonical form by orthogonal trung. Find also the same, Inden, sign. & nature of the quadratic form.

A =
$$\begin{bmatrix} -6 & 2 & 7 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

chae. Eqn: $\lambda^3 - 18\lambda^2 + 45\lambda = 0$
E. value: $0, 3, 15$

$$\mathcal{E}$$
 vector: $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$; $\begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$; $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$

$$N.E.$$
 weakowin: $N = \begin{bmatrix} y_3 - 2/3 & 2/3 \\ 2/3 & y_3 - 2/3 \\ 2/3 & 2/3 & y_3 \end{bmatrix}$

$$D = N^{5}AN = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$D = N^{5}AN = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix}$$

Ranu: 2 (2 non-zero E. values) Anden: 2 (2 +ve E. values) Nignatur: 2; Nature: positive semi desinite.

(An Autonomous Institution) Coimbatore - 35

DEPARTMENT OF MATHEMATICS

UNIT - II ORTHOGONAL TRANSFORMATION OF REAL SYMMETRIC MATRIX

Recluce The quadratic form $g = 6n^2 + 3y^2 + 3g^2 - 4ny - 2y3 + 43;$ into canonical form by an orthogonal teansformation Find its nature, land, Indea & signature.

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Chae . Egn. : 73_12 72+367-32=0 21-m+n=

E. values: 2,2,8.

E. Vectors: $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$; $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ al-m+n=0

N.E. Hamin: N = \[\frac{21_{16}}{-\text{V6}} \quad \text{V3} \]
\[\frac{1}{\text{V6}} \frac{\text{V2}}{\text{V3}} \]
\[\frac{1}{\text{V6}} \frac{\text{V3}}{\text{V3}} \]
\[\frac{1}{\text{V6}} \frac{\text{V3}}{\text{V3}} \]
\[\frac{1}{\text{V6}} \frac{1}{\text{V3}} \]
\[\frac{1}{\text{V6}} \frac{1}{\text{V6}} \frac{1}{\text{V6}} \]
\[\frac{1}{\text{V6}} \frac{1}{\text{V6}} \frac{1}{\text{V6}} \frac{1}{\text{V6}} \frac{1}{\text{V6}} \]
\[\frac{1}{\text{V6}} \]
\[\frac{1}{\text{V6}} \frac{1}{\te

 $D = \begin{bmatrix} 8 & 0 & 0 & 7 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ $D = 84^{2} + 24^{2} + 24^{2} + 24^{2}$

9 = 84,2+24,2+24,2.

Nature: positive deginité