Accredited by NBA AICTE and Accredited by NAAC
Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

19ECB231

II YEAR/ III SEMESTER

UNIT 1 MINIMIZATION TECHNIQUES AND LOGIC GATES

TOPIC - KARNAUGH MAP MINIMIZATION

WHY KARNAUGH MAP MINIMIZATION

$>$ K-map simplification technique is simpler and less error-prone compared to the method of solving the logical expressions using Boolean laws.
$>$ Its main purpose is to simplify Boolean algebraic expressions.

KARNAUGH MAP

$>$ KARNAUGH MAP is also named as K map
$>$ K map was introduced by Dr. Maurice karnaugh in the year 1953

KARNAUGH MAP - Rules

$>$ Karnaugh map is a pictorial method of grouping together expressions with common factors and then eliminating unwanted variables.
$>$ Karnaugh map uses the following rules for the simplification of expressions by grouping together adjacent cells containing ones .

1. Groups may not include any cell containing a zero

KARNAUGH MAP - Rules
2. Groups may be horizontal or vertical, but not diagonal.

KARNAUGH MAP - Rules

3. Groups must contain $\mathbf{1 , 2 , 4 , 8}$, or in general 2^{n} cells. If $n=1$, a group will contain two $1^{\prime} s$ since $2^{1}=2$. If $\boldsymbol{n}=2$, a group will contain four $1^{\prime} s$ since $\mathbf{2}^{\mathbf{2}}=4$.

KARNAUGH MAP - Rules

Each group should be as large as possible.

KARNAUGH MAP - Rules
Each cell containing a one must be in at least one group.

Groups may overlap.

KARNAUGH MAP - Rules

Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell

There should be as few groups as possible, as long as this does not contradict any of the previous rules

$>$ No zeros allowed.
$>$ No diagonals.
$>$ Only power of 2 number of cells in each group.
\Rightarrow Groups should be as large as possible.
$>$ Every one must be in at least one group.
$>$ Overlapping allowed.
$>$ Wrap around allowed.
$>$ Fewest number of groups possible.
$>$ Karnaugh Map is most suitable for Minimizing Boolean expressions of 2 Variable 3 Variable 4 Variable 5Variable

KARNAUGH MAP - 2 Variable

$>$ The number of cells in 2 variable K-map is four, since the number of variables is two.
\Rightarrow There is only one possibility of grouping 4 adjacent min terms.
$>$ The possible combinations of grouping 2 adjacent min terms are $\left\{\left(m_{0}, m_{1}\right),\left(m_{2}, m_{3}\right),\left(m_{0}, m_{2}\right)\right.$ and $\left.\left(m_{1}, m_{3}\right)\right\}$.

Y	0	1
0	m_{0}	m_{1}
1	m_{2}	m_{3}

or

$Y Z$				
m_{0}	m_{1}	m_{3}	m_{2}	

KARNAUGH MAP - Variable

$>$ The number of cells in 3 variable K-map is eight, since the number of variables is three.
-There is only one possibility of grouping 8 adjacent min terms.
$>$ The possible combinations of grouping 4 adjacent min terms are $\left\{\left(m_{0}, m_{1}, m_{3}\right.\right.$, $\left.m_{2}\right),\left(m_{4}, m_{5}, m_{7}, m_{6}\right),\left(m_{0}, m_{1}, m_{4}, m_{5}\right),\left(m_{1}, m_{3}, m_{5}, m_{7}\right),\left(m_{3}, m_{2}, m_{7}, m_{6}\right)$ and $\left(m_{2}\right.$, $\left.\left.m_{0}, m_{6}, m_{4}\right)\right\}$.
$>$ The possible combinations of grouping 2 adjacent min terms are $\left\{\left(m_{0}, m_{1}\right),\left(m_{1}\right.\right.$, $\left.m_{3}\right),\left(m_{3}, m_{2}\right),\left(m_{2}, m_{0}\right),\left(m_{4}, m_{5}\right),\left(m_{5}, m_{7}\right),\left(m_{7}, m_{6}\right),\left(m_{6}, m_{4}\right),\left(m_{0}, m_{4}\right),\left(m_{1}, m_{5}\right)$, $\left(m_{3}, m_{7}\right)$ and $\left(m_{2}, m_{6}\right)$.
> If $x=0$, then 3 variable K-map becomes 2 variable K-map.

KARNAUGH MAP - Variable

KARNAUGH MAP - Variable

$>$ The number of cells in 4 variable K-map is sixteen, since the number of variables is four.

	00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}
01	m_{4}	m_{5}	m_{7}	m_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_{8}	m_{9}	m_{11}	m_{10}

KARNAUGH MAP - Variable

$>$ There is only one possibility of grouping 16 adjacent min terms.
\Rightarrow Let R_{1}, R_{2}, R_{3} and R_{4} represents the min terms of first row, second row, third row and fourth row respectively. Similarly, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} represents the min terms of first column, second column, third column and fourth column respectively. The possible combinations of grouping 8 adjacent min terms are $\left\{\left(R_{1}, R_{2}\right),\left(R_{2}, R_{3}\right),\left(R_{3}\right.\right.$, $\left.\left.R_{4}\right),\left(R_{4}, R_{1}\right),\left(C_{1}, C_{2}\right),\left(C_{2}, C_{3}\right),\left(C_{3}, C_{4}\right),\left(C_{4}, C_{1}\right)\right\}$.
$>$ If $\mathrm{w}=0$, then 4 variable K-map becomes 3 variable K-map

KARNAUGH MAP - Variable

$>$ The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5 .

	$V=0$			
	00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}
01	m_{4}	m_{5}	m_{7}	m_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_{8}	m_{9}	m_{11}	m_{10}

$V=1$				
	00	01	11	10
00	m_{16}	m_{17}	m_{19}	m_{18}
01	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{28}	m_{29}	m_{31}	m_{30}
10	m_{24}	m_{25}	m_{27}	m_{26}

KARNAUGH MAP - Variable

$>$ There is only one possibility of grouping 32 adjacent min terms.
$>$ There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms from m_{0} to m_{15} and m_{16} to m_{31}.
$>$ If $\mathrm{v}=0$, then 5 variable K-map becomes 4 variable K-map.

1. Who introduced k map?
2. AK map is an abstract form of \qquad diagram organized as a matrix of squares.
a) Venn Diagram
b) Cycle Diagram
c) Block diagram
d) Triangular Diagram
3. There are \qquad cells in a 4-variable K-map.
4. Summarize the rules of k map.
5. Plot a 4 variable k map
6. Explain the K-Map using 2,3 and 4 variables.
