

SNS COLLEGE OF TECHNOLOGY

S S S INSTITUTIONS

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF BIOMEDICAL ENGINEERING

19BMB302 - BIOMEDICAL SIGNAL PROCESSING

III YEAR/ V SEMESTER

UNIT II FINITE IMPULSE RESPONSE FILTERS

19BMB302 - Biomedical signal processing / Unit-1 / Dr. K. Manoharan, ASP / BME / SNSCT

- Introduction to FIR
- Linear phase FIR filter
- FIR filter design using window method
- Low Pass Filter
- Frequency sampling method
- Realization of FIR filter using direct form 1, Direct form 2
- Realization of FIR filter using Cascade structures
- Realization of FIR filter using parallel structures

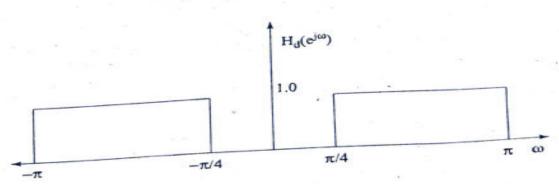
Example 6.6 Design an ideal highpass filter with a frequency response

$$H_d(e^{j\omega}) = 1 \text{ for } \frac{\pi}{4} \le |\omega| \le \pi$$

= 0 for $|\omega| \le \frac{\pi}{4}$

Find the values of h(n) for N = 11. Find H(z). Plot the magnitude response.

Solution


The desired frequency response is shown in Fig. 6.10.

We know

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{-\frac{\pi}{4}} e^{j\omega n} d\omega + \int_{\frac{\pi}{4}}^{\pi} e^{j\omega n} d\omega \right]$$

$$= \frac{1}{2\pi jn} \left[e^{j\omega n} \Big|_{-\pi}^{-\pi/4} + e^{j\omega n} \Big|_{\pi/4}^{\pi} \right]$$

$$= \frac{1}{\pi n(2j)} \left[e^{-j\pi n/4} - e^{-j\pi n} + e^{j\pi n} - e^{j\pi n/4} \right]$$
$$= \frac{1}{\pi n} \left[\sin \pi n - \sin \frac{\pi}{4} n \right] \qquad -\infty \le n \le \infty$$

Truncating $h_d(n)$ to 11 samples, we have

$$h(n) = h_d(n)$$
 for $|n| \le 5$
= 0 otherwise

For n=0

$$h(0) = \lim_{n \to 0} \frac{\sin \pi n}{\pi n} - \lim_{n \to 0} \frac{\sin \frac{\pi}{4}n}{\pi n}$$

$$= \left((1 - \frac{1}{4}) \right)$$

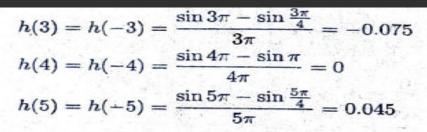
$$\lim_{n \to 0} \frac{\sin \pi n}{\pi n} = 1$$

$$\lim_{n \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{\sin n\theta}{\theta} = n$$

From the given frequency response we can find that $\alpha = 0$. Therefore, The file coefficients are symmetrical about n=0 satisfying the condition h(n)=h(-n)


For
$$n=1$$

$$h(1) = h(-1) = \frac{\sin \pi - \sin \frac{\pi}{4}}{\pi} = -0.225$$

Similarly

$$h(2) = h(-2) = \frac{\sin 2\pi - \sin \frac{\pi}{2}}{2\pi} = -0.159$$

The transfer function of the filter is given by

$$H(z) = h(0) + \sum_{n=1}^{\frac{N-1}{2}} \left[h(n)(z^n + z^{-n}) \right]$$

$$= 0.75 + \sum_{n=1}^{5} \left[h(n)(z^n + z^{-n}) \right]$$

$$= 0.75 - 0.225(z + z^{-1}) - 0.159(z^2 + z^{-2}) - 0.075(z^3 + z^{-3}) + 0.045(z^5 + z^{-5})$$

The transfer function of the realizable filter is

$$H'(z) = z^{-5}H(z)$$

$$= z^{-5}[0.75 - 0.225(z + z^{-1}) - 0.159(z^2 + z^{-2}) - 0.075(z^3 + z^{-3}) + 0.045(z^5 + z^{-5})]$$

$$= 0.045 - 0.075z^{-2} - 0.159z^{-3} - 0.225z^{-4} + 0.75z^{-5} - 0.225z^{-6} - 0.159z^{-7} - 0.075z^{-8} + 0.045z^{-10}$$

From Eq. (6.61) the filter coefficients of causal filter are

$$h(0) = h(10) = 0.045;$$
 $h(1) = h(9) = 0;$ $h(2) = h(8) = -0.075;$ $h(3) = h(7) = -0.159;$ $h(4) = h(6) = -0.225;$ $h(5) = 0.75$

$$\overline{H}(e^{j\omega}) = \sum_{n=0}^{\frac{N-1}{2}} a(n) \cos \omega n \quad \text{where}$$

$$a(0) = h\left(\frac{N-1}{2}\right) = h(5) = 0.75$$

$$a(n) = 2h\left(\frac{N-1}{2} - n\right)$$

$$a(1) = 2h(5-1) = 2h(4) = -0.45$$

$$a(2) = 2h(5-2) = 2h(3) = -0.318$$

$$a(3) = 2h(5-3) = 2h(2) = -0.15$$

$$a(4) = 2h(5-4) = 2h(1) = 0$$

$$a(5) = 2h(5-5) = 2h(0) = 0.09$$

$$\overline{H}(e^{j\omega}) = a(0) + a(1)\cos\omega + a(2)\cos2\omega + a(3)\cos3\omega + a(4)\cos4\omega + a(5)\cos5\omega = 0.75 - 0.45\cos\omega - 0.318\cos2\omega - 0.15\cos3\omega + 0.09\cos5\omega$$
 (6.62)

ω .	0	10	20	30	40	50	60	70	80	90 -
(in degrees)		-0.066	_0.0086	0.122	0.34	0.61	0.88	1.05	1.11	1.07
$\overline{H}(e^{j\omega})$ $ H(e^{j\omega}) _{dB}$	-0.08	-23.62	-41.3	-18.2	-9.36	-4.2	-1.1	0.504	0.95	0.587
into yiab		100	110	120				160	170	180
		0.98	0.93	0.94	0.995			The second secon	the second second second second	0.94
		-0.132	-0.625	-0.537	-0.037	2	0.48	0.16	-0.31	-0.537

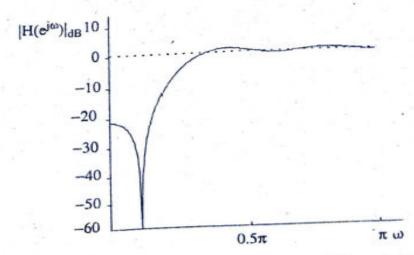


Fig. 6.11 Frequency response of highpass filter of example 6.6

Example 6.8 Design an ideal bandreject filter with a desired frequency response

$$H_d(e^{j\omega}) = 1$$
 for $|\omega| \le \frac{\pi}{3}$ and $|\omega| \ge \frac{2\pi}{3}$
= 0 otherwise

Find the value of h(n) for N = 11. Find H(z). Plot the magnitude response.

Solution

The desired frequency response is shown in Fig. 6.14.

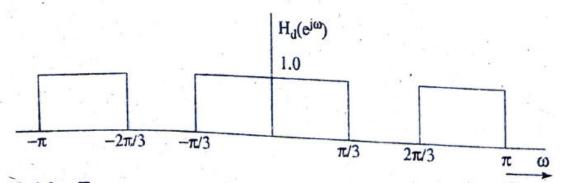
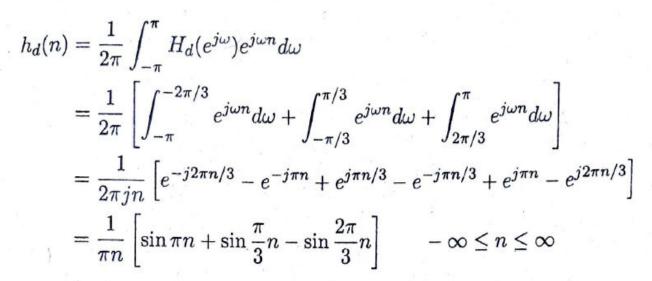



Fig. 6.14 Frequency response of Bandreject filter of example 6.8.

We know

Truncating $h_d(n)$ to 11 samples, we have

$$h(n) = h_d(n)$$
 for $|n| \le 5$
= 0 otherwise

The filter coefficients are symmetrical about n = 0 satisfying the condition h(n) = h(-n).

For n = 0

$$h(0) = \lim_{n \to 0} \left[\frac{\sin \pi n}{\pi n} + \frac{\sin \frac{\pi}{3}n}{\pi n} - \frac{\sin \frac{2\pi}{3}n}{\pi n} \right]$$

$$= \left(1 + \frac{1}{3} - \frac{2}{3} \right) = 0.667$$

$$h(1) = h(-1) = \frac{\sin \pi + \sin \frac{\pi}{3} - \sin \frac{2\pi}{3}}{\pi} = 0$$

$$h(2) = h(-2) = \frac{\sin 2\pi + \sin \frac{2\pi}{3} - \sin \frac{4\pi}{3}}{2\pi} = 0.2757$$

$$h(3) = h(-3) = \frac{\sin 3\pi + \sin \pi - \sin 2\pi}{3\pi} = 0$$

$$h(4) = h(-4) = \frac{\sin 4\pi + \sin \frac{4\pi}{3} - \sin \frac{8\pi}{3}}{4\pi} = -0.1378$$

$$h(5) = h(-5) = \frac{\sin 5\pi + \sin \frac{5\pi}{3} - \sin \frac{10\pi}{3}}{5\pi} = 0$$

The transfer function of the filter is

$$H(z) = h(0) + \sum_{n=1}^{\frac{N-1}{2}} \left[h(n)(z^n + z^{-n}) \right]$$

= 0.667 + 0.2757(z² + z⁻²) - 0.1378(z⁴ + z⁻⁴) (6.67)

The transfer function of the realizable filter

$$H'(z) = z^{-5}H(z)$$

$$= -0.1378z^{-1} + 0.2757z^{-3} + 0.667z^{-5} + 0.2757z^{-7} - 0.1378z^{-9}$$

The filter coefficients of the causal filter are

$$h(0) = h(10) = h(2) = h(8) = h(4) = h(6) = 0$$

$$h(1) = h(9) = -0.1378$$

$$h(3) = h(7) = 0.2757$$

$$h(5) = 0.667$$

$$\overline{H}(e^{j\omega}) = \sum_{n=0}^{\frac{N-1}{2}} a(n) \cos \omega n$$

$$a(0) = h\left(\frac{N-1}{2}\right) = h(5) = 0.667$$

$$a(n) = 2h\left(\frac{N-1}{2} - n\right)$$

$$a(1) = 2h(5-1) = 2h(4) = 0$$

$$a(2) = 2h(5-2) = 2h(3) = 0.5514$$

$$a(3) = 2h(5-3) = 2h(2) = 0$$

$$a(4) = 2h(5-4) = 2h(1) = -0.2756$$

$$a(5) = 2h(5-5) = 2h(0) = 0$$

ω						40	01 16 6
(in degrees)	0	15	30	45	60	75	
$\overline{H}(e^{j\omega})$	0.9428	1.0067	1.08	0.9426	0.529	0.0516	
$ H(e^{j\omega}) _{dB}$	-0.5	0.058	0.67	-0.513	-5.53	-25.7	
	90	105	120	135	150	165	180
	16	0.0516	0.529	0.9426	1.08	1.0067	0.9428
ii 8	-15.9	-25.7	-5.53	-0.513	0.67	0.058	-0.5

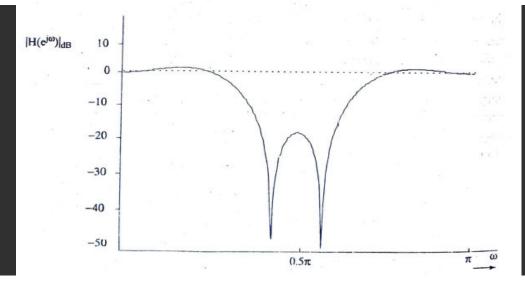


Table 6.2 Filter coefficients of FIR filters.

Туре	Coefficients	coefficients of FIR filters.			
	Coefficients of zero phase filter	Coefficients of linear phase filter with delay $\alpha = \frac{N-1}{2}$			
1. Lowpass filter with cutoff frequency ω_c	π	$h_d(n) = \frac{\omega_c}{\pi}$ for $n = \alpha$			
_	$h_d(n) = \frac{\sin \omega_c n}{n\pi} n > 0$	$= \frac{\sin \omega_c (n-\alpha)}{\pi (n-\alpha)} \text{ for } n \neq \alpha$			
2. Highpass filter with cutoff frequency ω_c	$h_d(0) = 1 - \frac{\omega_c}{\pi}$	$h_d(n) = 1 - \frac{\omega_c}{\pi}$ for $n = \alpha$			
Do- 1	$h_d(n) = \frac{-\sin \omega_c n}{n\pi} n > 0$	$=\frac{1}{\pi(n-\alpha)}[\sin(n-\alpha)\pi-\sin(n-\alpha)\omega_c]n\neq\alpha$			
and delicites wei	$h_d(0) = \frac{\omega_{c_2} - \omega_{c_1}}{\pi}$ $h_d(n) = \frac{1}{n\pi} [\sin(\omega_{c_2} n) - \sin(\omega_{c_1} n)] n > 0$	$h_d(n) = \frac{\omega_{c_2} - \omega_{c_1}}{\pi}$ for $n = \alpha$			
Bandreject filter with cutoff frequencies ω_c .	$h_d(0) = 1 - \frac{\omega_{c_2} - \omega_{c_1}}{\pi}$	$= \frac{1}{\pi(n-\alpha)} [\sin \omega_{c_2}(n-\alpha) - \sin \omega_{c_1}(n-\alpha)]$ $h_d(n) = 1 - \frac{\omega_{c_2} - \omega_{c_1}}{\pi} \text{ for } n = \alpha$			
and ω_{c_2}	$=\frac{1}{n\pi}[\sin(\omega_{c_1}n)-\sin(\omega_{c_2}n)]$	$= \frac{1}{\pi(n-\alpha)} [\sin \omega_{c_1}(n-\alpha) - \sin \omega_{c_2}(n-\alpha) + \sin(n-\alpha)]$			