
The Maxwell relations 

A number of second derivatives of the fundamental relation have clear physical 
significance and can be measured experimentally. For example: 

The property of the energy (or entropy) as being a differential function of its 
variables gives rise to a number of relations between the second derivatives, e. g. : 
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The Maxwell relations 
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Since this relation is not intuitively obvious, it may be regarded as a success of 
thermodynamics. 



The Maxwell relations 

Given the fact that we can write down the fundamental relation employing 
various thermodynamic potentials such as F, H, G, … the number of second 
derivative is large. However, the Maxwell relations reduce the number of 
independent second derivatives. 
 

Our goal is to learn how to obtain the relations among the second derivatives 
without memorizing a lot of information. 
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by the fundamental relation U(S,V,N), there are 
nine second derivatives, only six of them are 
independent from each other.  

In general, if a thermodynamic system has n 
independent coordinates, there are n(n+1)/2 
independent second derivatives. 



The Maxwell relations: a single-component system 

For a single-component system with conserved mole number, N, there are 
only three independent second derivatives: 
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Other second derivatives, such as e. g.: 
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can all be expressed via the above three, which are trivially related to three 
measurable physical parameters (dg = -sdT + vdP + µdN): 



The Maxwell relations: a single-component system 

A general procedure for reducing any derivative to a combination of α, κT, 
and cP is given on pages 187-189 of Callen. It is tedious but straightforward, 
you should read it and know it exists. You will also have a chance to practice  
it in a couple of homework exercises.  
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constant pressure 
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Stability of thermodynamic systems 

The entropy maximum principle states that in equilibrium: 

0=dS 02 <Sd

Let us consider what restrictions these two 
conditions imply for the functional form of the 
dependence of S on extensive parameters of a 
thermodynamic system. 

Let us consider two identical systems with 
the following dependence of entropy on 
energy for each of the systems: 
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Stability of thermodynamic systems 

Initially both sub-systems have energy U0 and 
entropy S0.  
 

Let us consider what happens to the total entropy 
of the system if some energy ∆U is transferred 
from one sub-system to another.  
 

In this case, the entropy of the composite system 
will be S(U0 + ∆U)+ S(U0 - ∆U) > 2S0.  
 

Therefore the entropy of the system increases 
and the energy will flow from one sub-system to 
the other, creating a temperature difference. 
 

Therefore, the initial homogeneous  state of the 
system is not the equilibrium state. 
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Consider a homogeneous 
system with the fundamental 
relation shown below and divide 
it on two equal sub-systems 



Phase Separation 

If the homogeneous state of the system is not the equilibrium state, the 
system will spontaneously become inhomogeneous, or will separate into 
phases. Phases are different states of a system that have different 
macroscopic parameters (e. g. density). 
 
 
Phase separation takes place in phase transitions. When a system 
undergoes a transition from one macroscopically different state to another it 
goes through a region of phase separation (e. g. water-to-vapor phase 
transition). 



Phase Separation Examples 

Two liquids. Above a certain 
temperature they form a 
homogeneous mixture. Below this 
temperature they phase separate. 

Electronic phase separation in perfect 
crystals of strongly correlated materials. 
Homogeneous crystal breaks into regions 
of normal metal and superconductor. 

Phase separation is ubiquitous.  



Stability of thermodynamic systems 

To have a stable system, the following condition has to be met: 
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For infinitesimal dU, the above condition reduces to: 
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Stability of thermodynamic systems 

X 

S Globally stable system 

X 

S 
Locally unstable region 

Fundamental relations of this shape are frequently obtained from statistical 
mechanics or purely thermodynamic models (e. g. van der Waals fluid).  
These fundamental relations are called the underlying fundamental relations. These 
relations carry information on system stability and possible phase transitions. 
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Stability: higher dimensions 

( ) ( ) ( )NVUSNVVUUSNVVUUS ,,2,,,, ≤∆−∆−+∆+∆+

If we consider simultaneous fluctuations of energy and volume, the stability 
condition is that: 

for any values of ∆U and ∆V. 
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Local stability criteria are now a little more complex: 

Determinant of Hessian matrix 



Physical consequences of stability conditions 

Stability conditions result in limitations on the possible values assumed by 
physically measurable quantities. 
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Therefore: 0≥vc

The molar heat capacity at constant volume must be positive. 



Stability conditions in the energy representation 

( ) ( ) ( )NVSUNVVSSUNVVSSU ,,2,,,, ≥∆−∆−+∆+∆+

From the fact that the internal energy of the system should be at minimum 
in equilibrium, we can derive the condition for stability in the energy 
representation: 

The local stability criteria in the energy representation are: 
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Stability conditions for other thermodynamic potentials 

Equations used in Legendre transformations: 
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Here P is a generalized intensive parameter conjugate to the 
extensive parameter X and U(P) is the Legendre transform of U(X). 
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Stability conditions for other thermodynamic potentials 
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Therefore, the sign of the second derivative of the Legendre transform of the internal 
energy is opposite to that of the internal energy. 



Stability conditions for other thermodynamic potentials 
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Internal energy: 

Exercise: derive stability 
conditions for the 
determinant of the 
Hessians matrix for 
various thermodynamic 
potentials.  
 
 
Note the difference of 
stability criteria with 
respect to extensive 
and intensive 
coordinates 



Physical consequences of stability conditions 
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Any of the just written stability conditions generates a constraint on some 
physical quantity, e. g.: 

0≥Tκ

The isothermal compressibility of a stable thermodynamic system is non-negative. 



Physical consequences of stability conditions 

From the Maxwell relations we can also derive:  
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