

 Reg.No:

SNS College of Technology, Coimbatore-35.

(Autonomous)

B.E/B.Tech- Internal Assessment -I

Academic Year 2022-2023(ODD)

Fifth Semester

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN

Time: 11/2 Hours Maximum Marks: 50

Answer All Questions

PART-A (5 x 2 = 10 Marks)

1. List the types of grammar based on Chomsky Hierarchy CO1 REM

2. Find the type of Grammar for the given production rule. Give the general rule

for that type of grammar

S-> AC|CB

C->aCb| ε

A->aA| ε

B->Bb| ε

CO1 ANA

3. Construct the Deterministic Finite Automata for set of strings over {a, b}

which has atmost 1a

CO1 CRE

4. What is sentinel and give its usage. CO2 REM

5. Differentiate tokens, patterns, lexeme. CO2 ANA

6.

(a)

 PART–B (13 X 2 = 26 Marks)

Construct the Deterministic Finite Automata for the following

by their regular language and regular expression over

{0,1}/{a,b}:

(i) Set of strings that begins with 0

(ii) Set of strings that begins with 0 and ends with 1

(iii) Set of strings that ends with bb

(iv) Set of strings that has at least 1 a

 13

CO1

CRE

 (or)

A

 (b) Construct the NFA which accepts all the strings over {0,1}

ending with 01 and find the equivalent DFA

13 CO1 APP

7. (a)

(i) Give the difference between NFA and DFA

(ii) Simplify the given DFA

3

10

CO1

CO1

ANA

APP

 (or)

 (b) Outline the following:

(i) Language Processing System

(ii) Compiler Construction Tools

13 CO2 UND

PART-C (14 x 1 = 14 Marks)

8. (a) Explain how the Turing machine is more powerful than other automata with

its formal and graphical representation. Construct the Turing machine for

Language 01*0

CO1 APP

 (or)

 (b) Elaborate on the various phases of compiler and trace it with the program

segment (position:=initial + rate * 60)

CO2 APP

(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)

 Reg.No:

SNS College of Technology, Coimbatore-35.

(Autonomous)

B.E/B.Tech- Internal Assessment -I

Academic Year 2022-2023(ODD)

Fifth Semester

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN

Time: 11/2 Hours Maximum Marks: 50

Answer All Questions

PART-A (5 x 2 = 10 Marks)

1. Find the type of Grammar for the given production rule
AB → CDB , AB → CdEB , ABcd → abCDBcd , B → b

CO1 ANA

2. State the Regular expression for set of strings over {a,b} that has at least 1 a CO1 APP

3. Differentiate NFA and DFA CO1 ANA

4. Outline the tuple representation of Turing Machine CO1 UND

5. List out the features of the Compiler CO2 REM

6.

(a)

 PART–B (13 X 2 = 26 Marks)

Define Finite automata and explain on the types of finite

automata and convert the following NFA to DFA

13

CO1

APP

B

 (or)

 (b) Explain how Pushdown Automata is more powerful than

Finite automata with its formal and graphical representation.

Construct the Pushdown Automata for Language L =

{0n1n|n>=0}

13 CO1 ANA

7. (a)

Elaborate the various phases of compiler and trace it with the

program segment (a=b+c*50.0)

13 CO2 APP

 (or)

 (b) Find the minimized DFA for the given DFA

13 CO1 ANA

PART-C (14 x 1 = 14 Marks)

8. (a) Construct the Regular Expression, DFA which accepts a string over

{0,1} / {a,b}

i. which is of length 2

ii. set of strings that ends with “bb”

iii. start with “0” and ends with “1”

iv. exactly 1 a

CO1 CRE

 (or)

 (b) Outline on following:

(i) Cousins of the compiler

(ii) Tools available for various phases of compiler

CO2 UND

(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)

Reg.No:

SNS College of Technology, Coimbatore-35.

(Autonomous)

B.E/B.Tech- Internal Assessment -I

Academic Year 2022-2023(ODD)

Fifth Semester

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN

Time: 11/2 Hours Maximum Marks: 50

 Answer All Questions

PART-A (5 x 2 = 10 Marks)

1. List the types of grammar based on Chomsky Hierarchy

● Type 0 is known as unrestricted grammar.

● Type 1 is known as context-sensitive grammar.

● Type 2 is known as a context-free grammar.

● Type 3 Regular Grammar

CO1 REM

2. Identify the type of Grammar for the given production rule. Give the general rule for that

type of grammar

S🡪 AC|CB

C🡪aCb| ε

A🡪aA| ε

B🡪Bb| ε

Type 2

CO1 ANA

3. Construct the Deterministic Finite Automata for set of strings over {a, b} which has at

most 1a

CO1 CRE

4. What is sentinel and give its usage.

A sentential form is any string derivable from the start symbol. Thus, in the derivation of

a + a * a , E + T * F and E + F * a and F + a * a are all sentential forms as are E and a + a

* a themselves. Sentence. A sentence is a sentential form consisting only of terminals

such as a + a * a.

CO2 REM

5. Differentiate tokens, patterns, lexeme. CO2 ANA

A

Token

It is basically a sequence of characters that are treated as a unit as it cannot be further

broken down. In programming languages like C language- keywords (int, char, float,

const, goto, continue, etc.) identifiers (user-defined names), operators (+, -, *, /),

delimiters/punctuators like comma (,), semicolon(;), braces ({ }), etc. , strings can be

considered as tokens. This phase recognizes three types of tokens: Terminal Symbols

(TRM)- Keywords and Operators, Literals (LIT), and Identifiers (IDN).

Lexeme

It is a sequence of characters in the source code that are matched by given predefined

language rules for every lexeme to be specified as a valid token.

Pattern

It specifies a set of rules that a scanner follows to create a token.

6.

(a)

 PART–B (13 X 2 = 26 Marks)

Construct the Deterministic Finite Automata for the following by their

regular language and regular expression:

(i) Set of strings over {0,1} that begins with 0

(ii) Set of strings over {0,1} that begins with 0 and ends with 1

(iii) Set of strings over {a,b} that ends with bb

3

3

3

4

CO1

CRE

(iv) Set of strings over {a,b} that has at least 1 a

 (or)

 (b) Construct the NFA which accepts all the strings over {0,1} ending with

01 and find the equivalent DFA

13 CO1 APP

7. (a)

(i) Give the difference between NFA and DFA

(ii) Find the minimized number of states in the given DFA

Q🡪{A,B,C,D,E} q0=A, F=E, inputs={0,1}

0 – Equivalence 🡪 {A,B,C,D} {E}

1 – Equivalence 🡪{A,B,C} {D}{E}

2 – Equivalence 🡪{A,C}{B}{D}{E}

3 – Equivalence 🡪{A,C}{B}{D}{E}

3

10

CO1

CO1

ANA

APP

 (or)

 (b) Outline the following:

(i) Language Processing System

13 CO2 UND

(ii) Compiler Construction Tools

The compiler writer can use some specialized tools that help in

implementing various phases of a compiler. These tools assist in the

creation of an entire compiler or its parts. Some commonly used

compiler construction tools include:

1. Parser Generator –

It produces syntax analyzers (parsers) from the input that is based on a

grammatical description of programming language or on a context-free

grammar. It is useful as the syntax analysis phase is highly complex

and consumes more manual and compilation time. Example: PIC,

EQM

2. Scanner Generator –

It generates lexical analyzers from the input that consists of regular

expression description based on tokens of a language. It generates a

finite automaton to recognize the regular expression.

Example: Lex

3. Syntax directed translation engines –

It generates intermediate code with three address format from the input

that consists of a parse tree. These engines have routines to traverse the

parse tree and then produces the intermediate code. In this, each node

of the parse tree is associated with one or more translations.

4. Automatic code generators –

It generates the machine language for a target machine. Each operation

of the intermediate language is translated using a collection of rules

and then is taken as an input by the code generator. A template

matching process is used. An intermediate language statement is

replaced by its equivalent machine language statement using templates.

5. Data-flow analysis engines –

It is used in code optimization.Data flow analysis is a key part of the

code optimization that gathers the information, that is the values that

flow from one part of a program to another. Refer – data flow analysis

in Compiler

6. Compiler construction toolkits –

It provides an integrated set of routines that aids in building compiler

components or in the construction of various phases of compiler.

PART-C (14 x 1 = 14 Marks)

8. (a) Explain how Turing machine is more powerful than other automata with its formal and

graphical representation. Construct the Turing machine for Language 01*0

• Turing Machine 🡪 recursively enumerable language

–Alan Turing (1936)

–Unrestricted Grammar

–Tape

–TM 🡪 what can be computed

–Model for Computer

–Algorithm 🡪 TM can do its computation

CO1 APP

https://www.geeksforgeeks.org/data-flow-analysis-compiler/
https://www.geeksforgeeks.org/data-flow-analysis-compiler/

• Applications

–Computer Networks

–Artificial Intelligence

–Machine Learning

 (or)

 (b) Describe the various phases of compiler and trace it with the program segment

(position:=initial + rate * 60)

We basically have two phases of compilers, namely the

1. Analysis phase

2. Synthesis phase.

The analysis phase creates an intermediate representation from the given source code.

The synthesis phase creates an equivalent target program from the intermediate

representation.

CO2 APP

Symbol Table – It is a data structure being used and maintained by the compiler,

consisting of all the identifier’s names along with their types. It helps the compiler to

function smoothly by finding the identifiers quickly.

The analysis of a source program is divided into mainly three phases. They are:

Linear Analysis-

Hierarchical Analysis-

Semantic Analysis-

Lexical Analyzer –

It is also called a scanner. It takes the output of the preprocessor (which performs file

inclusion and macro expansion) as the input which is in a pure high-level language. It reads

the characters from the source program and groups them into lexemes (sequence of

characters that “go together”). Each lexeme corresponds to a token. Tokens are defined by

regular expressions which are understood by the lexical analyzer. It also removes lexical

errors (e.g., erroneous characters), comments, and white space.

1. Syntax Analyzer – It is sometimes called a parser. It constructs the parse tree. It

takes all the tokens one by one and uses Context-Free Grammar to construct the parse tree.

Why Grammar?

The rules of programming can be entirely represented in a few productions. Using these

productions we can represent what the program actually is. The input has to be checked

whether it is in the desired format or not.

The parse tree is also called the derivation tree. Parse trees are generally constructed to

check for ambiguity in the given grammar. There are certain rules associated with the

derivation tree.

https://www.geeksforgeeks.org/compiler-lexical-analysis/
https://www.geeksforgeeks.org/compiler-design-introduction-to-syntax-analysis/

2. Semantic Analyzer – It verifies the parse tree, whether it’s meaningful or not. It

furthermore produces a verified parse tree. It also does type checking, Label checking, and

Flow control checking.

● Intermediate Code Generator – It generates intermediate code, which is a form

that can be readily executed by a machine We have many popular intermediate codes.

Example – Three address codes etc. Intermediate code is converted to machine language

using the last two phases which are platform dependent.

Till intermediate code, it is the same for every compiler out there, but after that, it depends

on the platform. To build a new compiler we don’t need to build it from scratch. We can

take the intermediate code from the already existing compiler and build the last two parts.

● Code Optimizer – It transforms the code so that it consumes fewer resources and

produces more speed. The meaning of the code being transformed is not altered.

Optimization can be categorized into two types: machine-dependent and machine-

independent.

● Target Code Generator – The main purpose of the Target Code generator is to

write a code that the machine can understand and also register allocation, instruction

selection, etc. The output is dependent on the type of assembler. This is the final stage of

compilation. The optimized code is converted into relocatable machine code which then

forms the input to the linker and loader.

https://www.geeksforgeeks.org/intermediate-code-generation-in-compiler-design/
https://www.geeksforgeeks.org/compiler-design-code-optimization/

(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)

Prepared By Verified By HoD

 Reg.No:

SNS College of Technology, Coimbatore-35.

(Autonomous)

B.E/B.Tech- Internal Assessment -I

Academic Year 2022-2023(ODD)

Fifth Semester

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN

Time: 11/2 Hours Maximum Marks: 50

Answer All Questions

PART-A (5 x 2 = 10 Marks)

1. Identify the type of Grammar for the given production rule

AB → CDB, AB → CdEB, ABcd → abCDBcd, B → b

Type 1

CO1 ANA

2. State the Regular expression for the set of strings over {a,b} that has atleast 1 a

R.L = {a,ba,ab,aa,aaa,aba,bbbba,bba,bbbaa,bbaaa,…..}

R.E = (a+b)* a (a+b)*

CO1 APP

3. Differentiate NFA and DFA

CO1 ANA

4. Give the tuple representation of Turing Machine CO1 UND

B

5. List out the features of the Compiler

● Compilation speed.

● The correctness of machine code.

● The meaning of code should not change.

● Speed of machine code.

● Good error detection.

● Checking the code correctly according to grammar.

CO2 REM

6.

(a)

 PART–B (13 X 2 = 26 Marks)

Define Finite automata and explain on the types of finite

automata and convert the following NFA to DFA

13

CO1

APP

 (or)

 (b) Explain how Pushdown Automata is more powerful than

Finite automata with its formal and graphical representation.

Construct the Pushdown Automata for Language L =

{0n1n|n>=0}

•FSA

–not applicable for all domains

–Limited Memory

•PDA

–FSA + Stack

–Applications

• Calculator

• Java / C Program

13 CO1 ANA

Transition:

a,b->c

• a 🡪 Input Symbol
–ε 🡪empty

• b 🡪 Top of the Stack which is to be popped
–ε 🡪 the stack is neither read nor popped

• c 🡪Symbol to be pushed into Stack
–ε 🡪 No symbols are pushed

7. (a)

Elaborate the various phases of compiler and trace it with the

program segment (a=b+c* 50)

We basically have two phases of compilers, namely the

1. Analysis phase

2. Synthesis phase.

The analysis phase creates an intermediate representation

from the given source code.

The synthesis phase creates an equivalent target program from

the intermediate representation.

13 CO2 APP

Symbol Table – It is a data structure being used and

maintained by the compiler, consisting of all the identifier’s

names along with their types. It helps the compiler to function

smoothly by finding the identifiers quickly.

The analysis of a source program is divided into mainly three

phases. They are:

Linear Analysis-

Hierarchical Analysis-

Semantic Analysis-

Lexical Analyzer –

It is also called a scanner. It takes the output of the

preprocessor (which performs file inclusion and macro

expansion) as the input which is in a pure high-level language.

It reads the characters from the source program and groups

them into lexemes (sequence of characters that “go together”).

Each lexeme corresponds to a token. Tokens are defined by

regular expressions which are understood by the lexical

https://www.geeksforgeeks.org/compiler-lexical-analysis/

analyzer. It also removes lexical errors (e.g., erroneous

characters), comments, and white space.

1. Syntax Analyzer – It is sometimes called a parser. It

constructs the parse tree. It takes all the tokens one by one and

uses Context-Free Grammar to construct the parse tree.

Why Grammar?

The rules of programming can be entirely represented in a few

productions. Using these productions we can represent what

the program actually is. The input has to be checked whether

it is in the desired format or not.

The parse tree is also called the derivation tree. Parse trees are

generally constructed to check for ambiguity in the given

grammar. There are certain rules associated with the

derivation tree.

2. Semantic Analyzer – It verifies the parse tree, whether

it’s meaningful or not. It furthermore produces a verified parse

tree. It also does type checking, Label checking, and Flow

control checking.

● Intermediate Code Generator – It generates

intermediate code, which is a form that can be readily

executed by a machine We have many popular intermediate

codes. Example – Three address codes etc. Intermediate code

is converted to machine language using the last two phases

which are platform dependent.

Till intermediate code, it is the same for every compiler out

there, but after that, it depends on the platform. To build a new

compiler we don’t need to build it from scratch. We can take

https://www.geeksforgeeks.org/compiler-design-introduction-to-syntax-analysis/
https://www.geeksforgeeks.org/intermediate-code-generation-in-compiler-design/

the intermediate code from the already existing compiler and

build the last two parts.

● Code Optimizer – It transforms the code so that it

consumes fewer resources and produces more speed. The

meaning of the code being transformed is not altered.

Optimization can be categorized into two types: machine-

dependent and machine-independent.

● Target Code Generator – The main purpose of the

Target Code generator is to write a code that the machine can

understand and also register allocation, instruction selection,

etc. The output is dependent on the type of assembler. This is

the final stage of compilation. The optimized code is

converted into relocatable machine code which then forms the

input to the linker and loader.

https://www.geeksforgeeks.org/compiler-design-code-optimization/

 (or)

 (b) Find the minimized DFA for the given DFA

Solution:

13 CO1 ANA

PART-C (14 x 1 = 14 Marks)

8. (a) Construct the Regular Expression, DFA which accepts a string over

{0,1} / {a,b}

i)which is of length 2

CO1 CRE

ii)set of strings that ends with “bb”

iii)start with “0” and ends with “1”

iv)exactly 1 a

 (or)

 (b) Outline about the following:

(i) Cousins of the compiler

CO2 UND

(ii) Tools available for various phases of the compiler

The compiler writer can use some specialized tools that help in implementing

various phases of a compiler. These tools assist in the creation of an entire

compiler or its parts. Some commonly used compiler construction tools

include:

1. Parser Generator –

It produces syntax analyzers (parsers) from the input that is based on a

grammatical description of programming language or on a context-free

grammar. It is useful as the syntax analysis phase is highly complex and

consumes more manual and compilation time. Example: PIC, EQM

2. Scanner Generator –

It generates lexical analyzers from the input that consists of regular expression

description based on tokens of a language. It generates a finite automaton to

recognize the regular expression.

Example: Lex

3. Syntax directed translation engines –

It generates intermediate code with three address format from the input that

consists of a parse tree. These engines have routines to traverse the parse tree

and then produces the intermediate code. In this, each node of the parse tree is

associated with one or more translations.

4. Automatic code generators –

It generates the machine language for a target machine. Each operation of the

intermediate language is translated using a collection of rules and then is taken

as an input by the code generator. A template matching process is used. An

intermediate language statement is replaced by its equivalent machine language

statement using templates.

5. Data-flow analysis engines –

It is used in code optimization.Data flow analysis is a key part of the code

optimization that gathers the information, that is the values that flow from one

part of a program to another. Refer – data flow analysis in Compiler

6. Compiler construction toolkits –

It provides an integrated set of routines that aids in building compiler

components or in the construction of various phases of compiler.

(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)

Prepared By Verified By HoD

https://www.geeksforgeeks.org/data-flow-analysis-compiler/

	Reg.No:
	SNS College of Technology, Coimbatore-35.
	(Autonomous)
	B.E/B.Tech- Internal Assessment -I
	Academic Year 2022-2023(ODD)
	Fifth Semester
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN
	Time: 11/2 Hours Maximum Marks: 50
	Answer All Questions
	PART-A (5 x 2 = 10 Marks)
	A
	PART-C (14 x 1 = 14 Marks)
	(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)
	Reg.No:
	SNS College of Technology, Coimbatore-35.
	(Autonomous)
	B.E/B.Tech- Internal Assessment -I
	Academic Year 2022-2023(ODD)
	Fifth Semester
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN
	Time: 11/2 Hours Maximum Marks: 50
	Answer All Questions
	PART-A (5 x 2 = 10 Marks)
	B
	PART-C (14 x 1 = 14 Marks)
	(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)
	Reg.No:
	SNS College of Technology, Coimbatore-35.
	(Autonomous)
	B.E/B.Tech- Internal Assessment -I
	Academic Year 2022-2023(ODD)
	Fifth Semester
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN
	Time: 11/2 Hours Maximum Marks: 50
	Answer All Questions
	PART-A (5 x 2 = 10 Marks)
	A
	PART-C (14 x 1 = 14 Marks)
	(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)
	Prepared By Verified By HoD
	Reg.No:
	SNS College of Technology, Coimbatore-35.
	(Autonomous)
	B.E/B.Tech- Internal Assessment -I
	Academic Year 2022-2023(ODD)
	Fifth Semester
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	19CSB301 – AUTOMATA THEORY AND COMPILER DESIGN
	Time: 11/2 Hours Maximum Marks: 50
	Answer All Questions
	PART-A (5 x 2 = 10 Marks)
	B
	PART-C (14 x 1 = 14 Marks)
	(Note: UND-Understand REM-Remember ANA-Analyze APP-Apply CRE-Create)
	Prepared By Verified By HoD

