

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECB202 – LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

Flip Flops/19ECB204/ LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/S NSCT

UNIT 5 – SEQUENTIAL CIRCUITS and PLC

TOPIC 1 – FLIP FLOP FUNDAMENTALS and SR Flipflop

1/7/2023

Sequential Circuits

- Sequential Logic:
 - -Output depends not only on current input but also on past input values, e.g., design a counter
 - -Need some type of memory to remember the past input values

1/7/2023

Flip Flops/19ECB204/ LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

- Outputs
- - Present state

Sequential Circuits

- Sequential Logic circuits remember past inputs and Inputs past circuit state.
- Outputs from the system are "fed back" as new inputs
 - -With gate delay and wire delay
- The storage elements are circuits that are capable of storing binary information: memory.

Clock

There are two types of sequential circuits:

- Synchronous sequential circuit: circuit output changes only at some discrete instants of time. This type of circuits achieves synchronization by using a timing signal called the clock.
- Asynchronous sequential circuit: circuit output can change at any time (clockless). 1/7/2023 Flip Flops/19ECB204/LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

- \succ In electronics a flip-flop or latch is a circuit that has two stable states and can be used to store state information –a bistable multivibrator.
- \blacktriangleright The circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs.
- \succ Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems. \succ Flip-flops and latches are used as data storage elements. \triangleright A flip-flop is a device which stores a single bit(binary digit) of data; one of its two states represents a "one" and the other represents a "zero".

Flip Flops

Flip flop is a sequential circuit

 \succ It samples its inputs and changes its outputs only at particular instants of time and not continuously.

> Flip flop is said to be edge sensitive or edge triggered rather than being level triggered like latches

TYPES

- SR Flip-Flop \bullet
- D Flip-Flop \bullet
- JK Flip-Flop
- T Flip-Flop \bullet

1/7/2023

Flip Flops/19ECB204/LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

SR Flip Flop

1/7/2023

Flip Flops/19ECB204/ LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

SR Flip Flop

The Set State

> If the input R is at logic level "0" (R = 0) & S is at logic level "1" (S = 1) Its output Q must be at a logic level "1". ≻Output Q is also fed back to input "A" \triangleright Both inputs to NAND gate X are at logic level "1" \succ Its output Q must be at logic level "0".

> If the reset input R changes state, and goes HIGH to logic "1" with S remaining HIGH also at logic level "1"

NAND gate *Y* inputs are now R = "1" and B = "0".

> Since one of its inputs is still at logic level "0" the output at Q still remains HIGH at logic level "1" and there is no change of state.

 \triangleright Therefore, the flip-flop circuit is said to be "Latched" or "Set" with Q = "1" and Q = "0".

SR Flip Flop

Reset State

- $\succ \overline{Q}$ is at logic level "0", its inverse output at Q is at logic level "1" Given by R = "1" and S = "0".
- \triangleright As gate X has one of its inputs at logic "0" its output Q must equal logic level "1" Output Q is fed back to input "B", so both inputs to NAND gate Y are at logic "1", therefore, $\overline{\mathbf{Q}} =$ "0".
- \succ If the set input, S now changes state to logic "1" with input R remaining at logic "1" \triangleright output \overline{Q} still remains LOW at logic level "0" and there is no change of state.

> Therefore, the flip-flop circuits "Reset" state has also been latched

SR Flip Flop Truth Table

S-R flip flop behavior

Present state

The state of Q output at the time the input signals are applied. Next state

The state of Q output after the flipflop has reacted to the input signals.

State	S	R	Q	Q	Des
Set	1	0	0	1	Se
	1	1	0	1	no
Reset	0	1	1	0	Res
	1	1	1	0	no
Invalid	0	0	1	1	Invalio

Flip Flops/19ECB204/ LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

d Condition

SR Flip Flop Truth Table

 \triangleright When both inputs S = "1" and R = "1" the outputs Q and Q can be at either logic level "1" or "0", depending upon the state of the inputs S or R BEFORE this input condition existed. \triangleright Therefore the condition of S = R = "1" does not change the state of the outputs Q and Q. \blacktriangleright The input state of S = "0" and R = "0" is an undesirable or invalid condition \triangleright The condition of S = R = "0" causes both outputs Q and Q to be HIGH together at logic level "1"

The result is that the flip-flop looses control of Q and Q \blacktriangleright The flip-flop becomes unstable and switches to an unknown data state based upon the unbalance

SR Flip Flop Characteristic Equation

$$Q\left(t+1
ight)=S+R'Q\left(t
ight)$$

1/7/2023

SR Flip Flop Switching Diagram

Flip Flops/19ECB204/ LINEAR AND DIGITAL CIRCUITS/Dr.B.Sivasankari/Professor/ECE/SNSCT

12/12