

SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

19MET201Engineering Thermodynamics

Mole and Mass Fraction

1.	A mixture of ideal gases consists of 7kg ofand 2kg ofat a pressure of 4bar and a temperature of 27°C. Determine:
	i. Mole fraction of each constituent,
	ii. Equivalent molecular weight of the mixture,
	iii. Equivalent gas constant of the mixture,
	iv. The partial pressure and partial volumes,
	v. The volume and density of the mixture
	Given data:
	=7kg
	$=2kg p=4bar T=27^{\circ}C$
	Solution:
	i. Mole fraction of ,

SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

19MET201Engineering Thermodynamics

Mole and Mass Fraction

Mole fraction of N₂,

$$x_{N_2} = \frac{\left(\frac{7}{28}\right)}{\left(\frac{7}{28}\right) + \left(\frac{2}{32}\right)} = 0.8$$

Mole fraction of O_2 ,

$$x_{O_2} = \frac{\left(\frac{2}{32}\right)}{\left(\frac{7}{28}\right) + \left(\frac{2}{32}\right)} = 0.2$$

ii. Equivalent molecular weight of the mixture,

$$M = x_{N_2}M_{N_2} + x_{O_2}M_{O_2}$$

$$= (0.8 \times 28) + (0.2 \times 32) = 28.8 \text{kg/kg mol}$$

$$\text{Total mass, m} = m_{N_2} + m_{O_2} = 7 + 2 = 9 \text{kg}$$

iii. Equivalent gas constant of the mixture,

$$R = \frac{m_{N_2} R_{N_2} + m_{O_2} R_{O_2}}{m}$$

iv. The partial pressure and partial volumes,

$$p_{N_2} = x_{N_2}p = (0.8 \times 4) = 3.2bar$$

$$p_{O_2} = x_{O_2}p = (0.2 \times 4) = 0.8bar$$

$$V_{N_2} = \frac{m_{N_2}R_{N_2}T}{p} = \frac{7(\frac{8.314}{28})\times300}{400} = 1.558m^3$$

$$V_{O_2} = \frac{m_{O_2}R_{O_2}T}{p} = \frac{2(\frac{8.314}{32})\times300}{400} = 0.389m^3$$

SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

19MET201Engineering Thermodynamics

Mole and Mass Fraction

. The volume and density of the mixture,

Density of
$$N_2 = \frac{m_{N_2}}{v_{N_2}} = \frac{7}{1.558} = 4.492 \text{kg/m}^3$$

Density of
$$O_2 = \frac{m_{O_2}}{v_{O_2}} = \frac{2}{0.389} = 5.141 \text{kg/m}^3$$