
MECH 6120: Combustion

Notes on Droplet Combustion

1 Pure Evaporation

The problem here is to determine the rate of evaporation of a droplet.
We start with the following assumptions.

1. The rate of change of the droplet radius R is sufficiently ’small’
so that the problem can be considered steady (i.e., a quasi–steady
assumption).

2. Properties k, cp, ρ, and D are constant. The first two approxima-
tions are reasonable. The last two are not – especially since ρ will
vary with 1/T . It could be relaxed (i.e., ρ 6= constant), but it makes
the formulation somewhat more difficult. In the end, the results for
ρ = constant and ρ 6= constant are equivalent.

3. The temperature of the droplet is uniform (this is the lumped–
capacity assumption).

4. The Lewis number is unity, i.e., D = α (note that α = k/ρ cp, so
assuming k and cp constant would imply that ρ D is constant, or
D ∼ 1/ρ. But here we assume that both D and ρ are constant).

We assume that we know the temperature and the species mass frac-
tions both at the surface and at infinity (far from the droplet). The
goal of the problem is to predict the velocity u of the vapor leaving the
droplet surface. Once we have this, we can find the mass transfer from
the surface and the evaporation rate.

First, review the relationships for the liquid–vapor interface (which
exists at r = R). Mass conservation gives

ρl ul,R = ρ uR (1)

where subscript l denotes the liquid phase, and R denotes that the
property is evaluated at the surface. It is implied that the right–hand
side corresponds to the gas phase (i.e., the g subscript is omitted). Also,
ρR = ρ = constant – per our assumptions.

The mass fraction of fuel in the liquid is Yf,l, and in the gas phase at
the surface it is Yf,R. Note that Yf,l > Yf,R, i.e., there is a ’jump’ in
fuel mass fraction at the surface.

In the liquid, only convection brings the fuel to the surface (liquid–
phase diffusion is negligible). In the gas, both convection and diffusion
bring the fuel away from the surface. The species balance for fuel at the
interface is then

ρl ul,R Yf,l = ρ uR Yf,R − ρD
dYf

dr

∣

∣

∣

∣

r=R

(2)

Use Eq. (1) and solve for uR:

uR = −
D

Yf,l − Yf,R

dYf

dr

∣

∣

∣

∣

r=R

(3)

We could also perform a similar balance on the transfer of O2 across the
interface, which would give the result

uR = −
D

YO2,l − YO2,R

dYO2

dr

∣

∣

∣

∣

r=R

(4)

in which YO2,l and YO2,R are the mass fractions of O2 in the liquid
(typically zero) and in the vapor at the surface.

The energy balance at the interface is similar to the species balance.
We neglect conduction in the liquid phase (T is uniform). In the gas,
both convection and conduction bring energy from the surface. The first
law at the surface is:

ρl ul,R hl = ρ uR hg,R − k
dT

dr

∣

∣

∣

∣

r=R

(5)

Both the liquid enthalpy hl and the vapor enthalpy hg would be evalu-
ated at the droplet temperature Tl (unlike mass fraction, the tempera-
ture is continuous from the liquid to the vapor phase). The difference in
vapor and liquid enthalpies is hlg, the latent heat of vaporization. Using
Eq. (1) in the above, and making the substitution α = k/ρ cp, gives

uR =
α cp

hlg

dT

dr

∣

∣

∣

∣

r=R

(6)

Equation (3) says that mass transfer (i.e., uR) results from diffusion
of the vapor away from the surface, whereas Eq. (6) says that mass
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transfer results from heat transfer into the surface (and subsequent va-
porization). Both are equivalent. Since there can only be one value of
uR, these two relations imply that the mass fraction and temperature
fields are coupled – which they are.

We can now proceed to the problem of determining the gas–phase
mass fraction and temperature profiles. The continuity equation is

∇ · ρu = 0 (7)

which, in spherical coordinates, is

1

r2

d

dr
r2 ρ u = 0 (8)

or

r2ρ u = constant = R2ρ uR (9)

The species equation (in spherical coordinates) is

1

r2

d

dr

(

r2ρ u Yf

)

=
ρD

r2

d

dr
r2

dYf

dr
(10)

Use Eq. (9) in the above and simplify:

R2uR

dYf

dr
= D

d

dr
r2

dYf

dr
(11)

Before we solve this DE, it is useful to define ’normalized’ variables
which make the boundary conditions somewhat easier to formulate. De-
fine

bf ≡
Yf − Yf,∞

Yf,l − Yf,R

(12)

where Yf,∞ is the ambient (or free–stream) fuel mass fraction – which
is typically zero. The interface velocity condition, Eq. (3), becomes

uR = −D
dbf

dr

∣

∣

∣

∣

r=R

(13)

The DE, Eq. (11), becomes

R2 uR

dbf

dr
= D

d

dr
r2 dbf

dr
(14)

and the boundary conditions are

bf = bf,R =
Yf,R − Yf,∞

Yf,l − Yf,R

, r = R (15)

bf = 0, r → ∞ (16)

This DE/BC problem is easy to solve. Integrate Eq. (14) once:

R2uRbf = D r2
dbf

dr
+ C1 (17)

Now set r = R, and use the interface condition in Eq. (13) to evaluate
the integration constant:

C1 = R2uRbf,R − D R2
dbf

dr

∣

∣

∣

∣

r=R

= R2uR(bf,R + 1) (18)

Replace this back in Eq. (17):

−R2uR(1 + bf,R − bf ) = D r2
dbf

dr
(19)

Separate the variables and integrate again:

R2uR

D r
= − ln(1 + bf,R − bf ) + C2 (20)

Let r → ∞ and use Eq. (16):

C2 = ln(1 + bf,R) (21)

This gives us the complete solution to the problem. The implicit formula
for bf is

ln

(

1 + bf,R

1 + bf,R − bf

)

=
R2 uR

D
·
1

r
(22)

We could solve this explicitly for bf , but the above form is useful enough.
Now set r = R (and bf = bf,R) and solve for the interface velocity:

uR =
D

R
ln(1 + bf,R) =

D

R
ln(1 + Bf ) (23)

where the transfer number Bf is defined

Bf = bf,R =
Yf,R − Yf,∞

Yf,l − Yf,R

(24)
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We can also work out the problem from a heat transfer approach. The
energy equation will be

R2 uR

dT

dr
= α

d

dr
r2

dT

dr
(25)

Define the normalized variable

bT ≡
cP (T∞ − T )

hlg

(26)

Using the fact that α = D, the interface velocity condition, Eq. (6),
becomes

uR = −α
dbT

dr

∣

∣

∣

∣

r=R

= −D
dbT

dr

∣

∣

∣

∣

r=R

(27)

and the DE becomes

R2 uR

dbT

dr
= D

d

dr
r2

dbT

dr
(28)

with boundary conditions

bT = bT,R =
cP (T∞ − Tl)

hlg

, r = R (29)

bT = 0, r → ∞ (30)

This is the same DE and same BCs as for the species equation. The
solution is therefore the same. We get

uR =
D

R
ln(1 + BT ) (31)

BT = bT,R =
cP (T∞ − Tl)

hlg

(32)

Note that the mass transfer and heat transfer results imply that BT =
Bf . This is a feature of our assumptions – especially D = α.

2 Evaporation with combustion

We now have a situation in which a diffusion flame forms around the
droplet. The position of the flame is r = rf . In addition to the as-
sumptions made in the pure evaporation case, we assume that the flame

thickness is infinitesimally small – which is equivalent to an ’infinite–
rate’ kinetics model. The flame forms a boundary, separating a region
with fuel and combustion products (on the inside) from a region with
oxygen and combustion products (on the outside). Neither fuel nor O2

can penetrate the flame, and their mass fractions directly at the flame
go to zero.

As before, we want to predict the burning rates. The interface bound-
ary conditions (i.e., Eqs. (3), (4), (6)) remain the same – since the re-
action occurs completely in the gas phase. The DEs in the gas phase,
however, will now include the source (or sink) terms corresponding to
the reaction. In particular, the DEs for fuel, O2, and energy will appear

R2 uR

dYf

dr
= α

d

dr
r2

dYf

dr
+

r2ω̇f MWf

ρ
(33)

R2 uR

dYO2

dr
= α

d

dr
r2

dYO2

dr
+

ν r2ω̇f MWf

ρ
(34)

R2 uR

dT

dr
= α

d

dr
r2

dT

dr
−

r2ω̇f MWf LHV

ρ cp

(35)

In the above, ν is the stoichiometric O2/fuel ratio (kg O2/kg fuel), and
ω̇f MWf is the fuel reaction rate (kg fuel/m3 · s). Note that the O2

reaction rate, ω̇O2
MWO2

, would be ν times the fuel reaction rate. And
both these numbers would be negative.

The presence of the reaction rate terms make solution of the DEs
difficult. Note that, according to our ’infinite–rate’ assumptions, the
reaction rates would mathematically appear as delta functions – in that
they would be zero for all positions except directly at the flame. We
can avoid the reaction rate terms by defining ‘coupling’ functions. For
example, divide Eq. (34) through by ν and subtract it from Eq. (33). If
we define

ffo = Yf −
YO2

ν
(36)

we find that ffo satisfies

R2 uR

dffo

dr
= α

d

dr
r2 dffo

dr
(37)
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Likewise, we can define

fTf =
cpT

LHV
+ Yf (38)

fTo =
cpT

LHV
+

YO2

ν
(39)

and each of these satisfies Eq. (37). So we have come up with variables
which eliminate the reaction rate from the DE.

What we want to do now is ‘renormalize’ the f variables so that we
get a problem identical to that solved for the pure evaporation case.
If the DE and BCs are the same, the solution is the same. Referring
to Eqs. (14) and (28), the DEs for the b variables – which were used
for the pure evaporation model – are already identical to the DE for
f , Eq. (37) (remember that α = D). But the f variables will not, as
currently defined, satisfy the same BCs as the b variables. However,
Eq. (37) is homogeneous and linear. It follows that if f is a solution,
then b = c1f + c2 is also a solution – where c1 and c2 are constants.
We therefore want to choose c1 and c2 so that the new, ‘renormalized’
b satisfies the pure evaporation boundary conditions.

The first criterion is that b → 0 for r → ∞. So we can define b
as b = c1(f − f∞), where f∞ is the value of f evaluated at r → ∞.
Secondly, we want b to satisfy the interface velocity condition:

u = −α
db

dr

∣

∣

∣

∣

r=R

(40)

or, using b = c1(f − f∞),

c1 = −u ·

(

α
df

dr

∣

∣

∣

∣

r=R

)

−1

(41)

To figure out the right–hand–side, we need to substitute in the specific
definintions of the f variables (Eqs. (36), (38) and (39)) and the interface
relations given in Eqs. (3), (4), and (6). (Ignore, for the time being, that
the O2 concentration – and dYO2

/dr – will be zero at the surface, per
our diffusion flame assumption, which means that Eq. (4) would be

indeterminant). For the fo coupling, we get

α
dffo

dr

∣

∣

∣

∣

r=R

= α

(

dYf

dr

∣

∣

∣

∣

r=R

−
1

ν

dYO2

dr

∣

∣

∣

∣

r=R

)

= −u

(

Yf,l − Yf,R −
1

ν
(YO2,l − YO2,R)

)

Combine this with Eq. (41) and we get our definition of bfo:

bfo =
Yf − Yf,∞ −

1

ν
(YO2

− YO2,∞)

Yf,l − Yf,R −
1

ν
(YO2,l − YO2,R)

(42)

Likewise, for the Tf and To couplings, we get

bTf =

cp

LHV
(T∞ − T ) + Yf,∞ − Yf

hlg

LHV
+ Yf,l − Yf,R

(43)

bTo =

cp

LHV
(T∞ − T ) +

1

ν
(YO2,∞ − YO2

)

hlg

LHV
+

1

ν
(YO2,l − YO2,R)

(44)

Our problem is now completely equivalent to the pure evaporation
case. The velocity at the surface is given by

uR =
α

R
ln(1 + B) (45)

where the transfer number B is b evaluated at the surface, and can be
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obtained from the fo, Tf , or To couplings:

B = Bfo = BTf = BTo

Bfo =
Yf,R − Yf,∞ −

1

ν
(YO2,R − YO2,∞)

Yf,l − Yf,R −
1

ν
(YO2,l − YO2,R)

(46)

BTf =

cp

LHV
(T∞ − Tl) + Yf,∞ − Yf,R

hlg

LHV
+ Yf,l − Yf,R

(47)

BTo =

cp

LHV
(T∞ − Tl) +

1

ν
(YO2,∞ − YO2,R)

hlg

LHV
+

1

ν
(YO2,l − YO2,R)

(48)

Commonly, the droplet will consist of pure fuel, so Yf,l = 1 and
YO2,l = YO2,R = 0. At infinity, we can also assume that the fuel concen-
tration is zero, so Yf,∞ = 0. When combustion is present, the tempera-
ture of the droplet will be close to the boiling (or saturation) tempera-
ture of the fuel at the given total pressure, so Tl = TB. We could obtain
the fuel mass fraction at the surface, Yf,R, by assuming that the partial
pressure of the fuel at the surface is equal to the saturation pressure
(thermodynamic equilibrium) – and then relate the partial pressure to
the mass fraction. An easier route is to use the To formula for B – since
this does not involve mass fractions at the surface. Using the above
assumptions:

BTo =
cp

hlg

(T∞ − TB) +
LHV YO2,∞

ν hlg

(49)

2.1 Location of the flame and flame temperature

Go back to Eq. (22). The general solution for the b variable is

ln

(

1 + B

1 + B − b

)

=
R2 uR

α
·
1

r

where we’ve used the fact that bR ≡ B. Combine this with

uR =
α

R
ln(1 + B) (50)

to get
r

R
=

ln(1 + B)

ln

(

1 + B

1 + B − b

) (51)

Realize that the above is the solution for any of the 3 b variables
given in Eqs. (42–44). And – at any point in the flame, all of the three
b variables must be equal to each other.

Per our infinite–kinetics assumption, both Yf and YO2
will be zero at

the flame. It follows from Eq. (42) that the value of bfo at the flame
(denoted bfo,F ) will be

bfo,F =
YO2,∞

ν(1 − Yf,R)
(52)

Likewise, if we assume zero O2 on the fuel side of the flame, and zero
fuel on the O2 side of the flame, the equation for Bfo, Eq. (46), gives

Bfo =
Yf,R +

YO2,∞

ν
1 − Yf,R

(53)

Combine the previous two equations with Eq. (51), and the flame posi-
tion is

rF

R
=

ln(1 + B)

ln

(

1 +
YO2,∞

ν

) (54)

We see that the distance from the surface to the flame will depend on
the mass transfer rate through the ln(1 + B) term. As the burning rate
increases, the flame moves farther away from the droplet.

The expression for rF /R usually predicts results different than exper-
imental measurements for two reasons:

1. Buoyancy of hot combustion gases affects the flame shape so that
it is not spherical – experimental values of rF /R may be difficult
to assign.

2. The region of maximum luminosity is usually used to define rF ,
and this will generally be different than the position of maximum
temperature which, as we will see below, theoretically defines the
flame location. Maximum luminosity occurs where the concentra-
tion of carbonaceous soot particles is greatest, and this occurs on
the fuel–side of the flame.
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In the expression for rF , we have (implicitly) assumed that rF > R
– i.e., the flame is in the gas phase. We see from Eq. (54) that in
the limit of B → YO2,∞/ν the flame ‘collapses’ onto the fuel surface.
From Eq. (53), this limit would be attained for Yf,R → 0 – which would
correspond to a fuel that does not vaporize prior to combustion (such as
solid carbon). For such a combustion process, the reaction occurs in the
solid rather than the gas phase. Consequently, the gas phase equations
for solid combustion no longer contain reaction rate terms – but the
boundary conditions will.

2.2 Flame temperature

To predict the flame temperature, we use the fact that the solution for
bfo will be identical to the solution for bTo, since both satisfy the same
DE and BC’s. We know the value of bfo at the flame – therefore we
know the value of bTo at the flame, from which we can get the flame
temperature. Using the thin flame assumption and Eqs. (44) and (52),
we have

bTo,F =
cp

hlg

(T∞ − TF ) +
YO2,∞LHV

νhlg

= bfo,F =
YO2,∞

ν(1 − Yf,R)
(55)

We can determine Yf,R in the above by equating Bfo and BTo, i.e.,

Bfo =
Yf,R +

YO2,∞

ν
1 − Yf,R

= BTo =
cp

hlg

(T∞ − TB) +
LHV YO2,∞

ν hlg

(56)

where TB is again the boiling temperature of the liquid. Eliminating
Yf,R between the above two equations and solving for TF yields

TF = TB +
T∞ − TB +

YO2,∞

νcp
(LHV − hlg)

YO2,∞

ν + 1
(57)

Actually, we could derive the above temperature from a pure energy–
balance point of view. Per unit mass of fuel, the quantity of heat released
from the reaction is LHV . This heat does three things: 1) it vaporizes
a unit mass of fuel, 2) it raises the temperature of the vaporized fuel

from TB to TF , and 3) it raises the temperature of the oxygen and inert
species from T∞ to TF . In the free stream, all we have is oxygen and
inerts (i.e., N2). So for every 1 g of oxygen, we have (1−YO2,∞)/YO2,∞

g of inerts. Since it takes ν g of oxygen to react with 1 g of fuel, we
have

mass oxygen &
inerts per unit
mass of fuel

= ν(1 +
1 − YO2,∞

YO2,∞

) =
ν

YO2,∞

(58)

The energy balance can then be written

LHV = hlg + cp(TF − TB) +
ν

YO2,∞

cp(TF − T∞) (59)

which, upon solving for TF , yields the exact same formula as that given
by Eq. (57). The energy balance approach defines the adiabatic flame
temperature for the liquid fuel. This temperature will be lower that the
adiabatic flame temperature for the same fuel in a vapor phase because
of the heat required to vaporize the fuel.

2.3 Spray Combustion

In most combustion devices using liquid fuels (i.e., diesel engines, jet
engines) the fuel is atomized, or broken up into droplets, prior to the
combustion process. The degree of atomization profoundly affects the
performance of liquid fuel combustion devices. Commonly, it is desirable
to produce the minimum droplet size – because this will produce the
maximum total surface area for a given mass of fuel. Another design
criteria of atomizers is the nature of the spray pattern. Some atomizers
are designed to produce a region relatively free of drops along the spray
axis (hollow cone), where others produce a uniform density of drops (full
cone).

Atomizers used in combustion devices (commonly referred to as in-
jectors) can be classified into two major categories:

1. Pressure–atomizing injectors: Here the fuel injector is simply a
small orifice through which the fuel is forced with a high velocity
into relatively quiescent air. A common example is the nozzle on
a garden hose. The fuel, as it issues from the nozzle, forms into a
conical surface. Instabilities arising from surface tension and fluid
turbulence break up the surface into droplets.
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2. Twin–fluid injectors: Atomization is accomplished here by inject-
ing the fuel jet at a relatively low velocity into a high–velocity air
stream. The drag between the fuel and the air breaks the fuel into
droplets. Although twin–fluid injectors are more complicated, they
can produce smaller droplets than pressure atomization.

A table of typical injector devices used in combustion systems is given
in Fig. 1 (from Kuo, p. 519).

The simultaneous burning of a multitude of drops in a combustion
chamber can alter the picture somewhat from the single drop analysis
performed in the previous section. Two major complications arise when
dealing with groups of drops. Firstly, the environment surrounding each
drop is altered due to the combustion of neighboring drops. Each drop is
competing for the same supply of oxidizer, so the oxidizer mass fraction
in the free stream for group combustion will be somewhat lower than
the case for a single drop in an infinite oxidizer. Also, the ambient
temperature ‘seen’ by each drop will be higher because of the burning
of neighboring drops.

The second complicating factor deals with the diffusion of oxidizer into
the ‘cloud’ of droplets. If the droplet vaporization rate is much higher
than the oxidizer diffusion rate, then it is possible for the droplets to
completely vaporize before combustion occurs. The combustion process
in this situation would then be governed by the laws of gaseous diffu-
sion flames. Also, the length of the spray will be controlled by either
the droplet evaporation time or the oxidizer diffusion time – whichever
is longer. To adequately address this problem, one would have to inves-
tigate the transport of oxidizer into the spray jet – much in the same
way that we investigated jet diffusion flames.

3 Combustion of Solid Fuels

3.1 Introduction

The combustion of solid fuels has been used since the dawn of time to
provide heat and cook food. This form of fuel is also often associated
with the more unpleasant aspects of combustion – i.e., destructive fires.
Solid fuels are attractive because they have been relatively cheap and
abundant (e.g., wood and coal), are easy to handle and store, and can
provide high flame temperature and heat of combustion. In the past,

Figure 1: Typical atomization methods

solid fuels have been used primarily in stationary power plants or large
locomotive or marine propulsion systems. Recently, solid fuels have been
developed for rocket and aircraft propulsion.
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When heated, some solids sublime directly to a vapor (such as naph-
thalene) and some melt into a liquid which then vaporizes (such as can-
dle wax). Combustion of such solid fuels will occur in the gas phase, and
our relations for liquid fuels can be used to predict the burning rates,
flame positions, and flame temperatures providing the solid–vapor or
solid–liquid enthalpy change is accounted for.

Some solids undergo a chemical reaction (known as pyrolyzation)
when exposed to heat. Products of this reaction are combustible volatile
gases and carbonaceous char. For example, when wood is heated CO,
CO2 and volatile hydrocarbons are formed from pyrolysis reactions and
diffuse from the fuel. Determination of the burning rate during the py-
rolysis (or devolatilization) stage involves two steps: 1) finding the rate
of evolution of the volatiles from the solid as a function of the applied
heat flux, and 2) applying the liquid–fuel relations to find the flame po-
sition and heat flux to the surface. A key difference between pyrolyzing
solid combustion and liquid fuel combustion is that the liquid vaporiza-
tion is a surface process, whereas the solid devolatilization is volumetric
process. To precisely predict the rate of devolatilization from a pyrolyz-
ing solid, one must analyze the heat and mass transfer processes and
chemical reactions in the interior of the solid. This can be a formidable
process, especially for non–homogeneous solid fuels such as coal. Often
devolatilization rates are obtained empirically as a function of heat flux,
ambient oxygen concentration and temperature, and other governing
parameters.

Note that during devolatilization of a solid fuel, the combustion
process occurs in the gas phase. Once all volatiles have been driven
off of the fuel, the carbonaceous solid residue (char) is directly attacked
by oxygen to yield ‘glowing combustion’. In this process combustion is
taking place directly in the solid phase.

Metals will burn in either a vapor or a solid phase mode depending
upon the boiling temperatures of the metal and the corresponding metal
oxide. For nearly all metals, the oxide boiling temperature is greater
than the pure metal boiling temperature. The metal will thus vaporize
before it oxidizes and combustion occurs in the vapor phase (as in liquid
fuels). A few metals, notably boron, silicon, titanium, and zirconium,
have boiling temperatures higher than their oxides. Combustion of these
metals occurs in the solid phase, similar to solid carbon.

3.2 Combustion of a solid sphere

Here we consider small spherical particles of solid fuels that do not
vaporize prior to combustion, i.e., they burn on the surface as oxygen
diffuses to the surface.

Since the fuel does not vaporize, Yf,R = 0. If we assume infinite–rate
kinetics for the surface reaction, the mass fraction of O2 at the surface
will also be zero, and we can directly borrow from the relationships
developed for liquid droplet combustion. The mass flux at the surface
would be given by

ṁ′′

R =
ρα

R
ln(1 + B) (60)

and the transfer number would be given by (from Eq. (53))

B = Bfo =
1

ν
(YO2,∞ − YO2,R) ≈

YO2,∞

ν
(61)

The burning rate – which is the rate at which the solid fuel is oxidized
– is the mass flux times the particle area:

ṁ = 4πR2ṁ′′

R = 4πRρα ln(1 + B) (62)

The burning rate for this situation depends on (among other things)
the value of ν – which in turn will depend on the fuel and the species
produced at the surface. For most carbonacueous solid fuels (i.e., wood,
coal), the fuel can be approximated as elemental solid carbon, C. Two
types of oxidation reactions can occur with this fuel – forming either
CO2 or CO. If carbon dioxide is formed at the surface, then the reaction
is

C + O2 −→ CO2 (63)

and ν = 32/12. For air, YO2,∞ = 0.233, so B would have the value 0.087
– which is quite small. We can then make the ‘small B’ assumption:
namely that

ln(1 + B) ≈ B =
YO2,∞

ν
(64)

and the burning rate is thus proportional to the ambient oxygen content.
For solid carbon combustion the assumption that reaction rates are

significantly faster than diffusion rates is often not accurate. If the
reaction rates are comparable to or slower than the oxygen diffusion
rate, then the thin–flame assumption will not hold and oxygen will build
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up at the particle surface. For this situation the transfer number is
approximated by

B ≈
1

ν
(YO2,∞ − YO2,R) (65)

Since YO2,R will be smaller than YO2,∞, and YO2,∞ is a small number in
itself, we can use the small B assumption to write the mass flux from
the particle:

ṁ′′

R =
ρα

R
ln(1 + B) ≈

ρα

νR
(YO2,∞ − YO2,R) (66)

The above equation is not very useful at this point because the mass
fraction of O2 at the surface, YO2,R, is an unknown. To complete the
problem, we need to introduce chemical kinetics into the analysis. Say
the reaction is represented by Eq. (63). The rate at which this reaction
occurs would be given by the law of mass action – except some of the
quantities are different than what we encountered for pure gas–phase re-
actions. First, the relevant rate will be the rate of mass consumption (or
mole consumption) of carbon per unit surface area of particle – not per
unit volume. This is because the reaction occurs on a surface. Secondly,
the carbon is in the solid phase, and its concentration does not appear
in the rate law. Only the concentration of the O2 will appear. We can
assume that the rate is first–order with respect to O2 concentration.
Since the O2 concentration at the surface would be proportional to the
O2 mass fraction at the surface, the rate law for carbon consumption
could be put into the form

ṁ′′

f = k YO2,R (67)

where k is a ‘surface reaction rate constant’ and would have units of
kg/m2·s (i.e., a mass flux). The rate constant k would be dependent
mostly on temperature, and to a lesser extent on total pressure. See the
text for more discussion on this.

The mass fluxes predicted in the previous two equation would have
to be equal. By combining the equations and solving for YO2,R, we get

YO2,R =

ρα

R
YO2,∞

k +
ρα

R

(68)

Using this in Eq. (9) results in

ṁ′′

R =
YO2,∞

ν
·







kρα

R

k +
ρα

R






(69)

We gain two limiting cases from the above equation.

1. Diffusion control: Here k ≫ ρα/R and the mass flux is obtained
from our thin–flame approximation, i.e.

ṁ′′

R =
YO2,∞ρα

νR
(70)

This condition will occur for large particles (say > 100 µm in diam-
eter) and when the surface temperature is high so that k is high.

2. Chemistry control: Here k ≪ ρα/R and the mass flux becomes

ṁ′′ =
k YO2,∞

ν
(71)

This will occur for small particles and low temperatures.

As noted above, the value of ν will depend on the product formed at
the surface. Formation of CO2 is actually unlikely due to the chemical
structure of CO2 – the C is in between the O atoms. A more probable
product is CO. The CO formed at the surface can then diffuse outward
to react with the inward diffusing oxygen and the ultimate product CO2

is formed in the gas phase. In this situation, both a gas phase and a
surface reaction are present.

Acutally, little oxygen gets to the surface since it is consumed in
oxidizing the CO. Some of the CO2 formed in this reaction diffuses back
to the surface where it is reduced by the solid carbon to form CO. The
realistic reaction steps in carbon combustion are thus

C + CO2 −→ 2CO (surface)

CO +
1

2
O2 −→ CO2 (gas)
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