

# Outline







**Testing is one of the most expensive parts of chips** 

- Logic verification accounts for > 50% of design effort for many chips
- Debug time after fabrication has enormous opportunity cost
- Shipping defective parts can sink a company
- □ Example: Intel FDIV bug
  - Logic error not caught until > 1M units shipped
  - Recall cost \$450M (!!!)









**Does the chip simulate correctly?** 

- Usually done at HDL level
- Verification engineers write test bench for HDL
  - Can't test all cases
  - Look for corner cases
  - Try to break logic design
- Ex: 32-bit adder
  - Test all combinations of corner cases as inputs:
    - 0, 1, 2, 2<sup>31</sup>-1, -1, -2<sup>31</sup>, a few random numbers

Good tests require ingenuity

9/18/2018

## **Silicon Debug**



### **Shmoo Plots**



### **Shmoo Plots**



## **Manufacturing Test**



Slide 8

# **Testing Your Chips**



#### **TestosterICs**





# **Stuck-At Faults**



□ How does a chip fail?

- Usually failures are shorts between two conductors or opens in a conductor
- This can cause very complicated behavior
- □ A simpler model: *Stuck-At* 
  - Assume all failures cause nodes to be "stuck-at"
    - 0 or 1, i.e. shorted to GND or  $V_{DD}$
  - Not quite true, but works well in practice

### **Examples**



#### **Observability & Controllability**





- Observability: ease of observing a node by watching external output pins of the chip
- Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip
- Combinational logic is usually easy to observe and control
- Finite state machines can be very difficult, requiring many cycles to enter desired state
  - Especially if state transition diagram is not known to the test engineer

### **Test Pattern Generation**



### **Test Example**



# **Design for Test**



#### Scan





#### Summary

