SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING 19ECB231-DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 4 -DESIGN OF SEQUENTIAL CIRCUITS

TOPIC 2 - DECODER AND ENCODER

WHAT IS A DECODER?

$>$ Decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2^{n} unique outputs.

DECODER

A decoder has

n inputs
2^{n} outputs

- A decoder selects one of 2^{n} outputs by decoding the binary value on the n inputs.
- The decoder generates all of the minterms of the n input variables.

Exactly one output will be active for each combination of the inputs

What does "active" mean?

DECODER

DECODER

DECODERS

a	b	c	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder with Enable

A

active-high enable

Decoder with Enable

A

ACTIVITY

How Many Words in a Minute

Level: Any
Time: 15 minutes
Materials: Vocab groups to revise A watch to time a minute

WHY ENCODERS?

An encoder has
2^{n} inputs
n outputs
Outputs the binary value of the selected (or active) input.
Performs the inverse operation of a decoder. Issues
What if more than one input is active?
What if no inputs are active?

Encoders

$\mathbf{Y}_{\mathbf{0}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	\mathbf{A}	\mathbf{B}
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

EE203 - Linear and DigitalCircuits
Dr.B.Sivasankari,ASP/ECE

Priority Encoders

- If more than one input is active, the higher-order input has priority over the lower-order input.

The higher value is encoded on the output
A valid indicator, d, is included to indicate whether or not the output is valid.

Output is invalid when no inputs are active

$$
\therefore \quad \mathrm{d}=0
$$

Output is valid when at least one input is active

Priority Encoders

Dr.B.Sivasankari,ASP/ECE

Using an n-output Decoder

Use an n-output decoder to realize a logic circuit for asimmins

- function with n minterms.

Each minterm of the function can be mapped to an output of the decoder.

- For each row in the truth table, for the function, where the output is 1 , sum (or "OR") the corresponding outputs of the decoder.

That is, for each minterm in the minterm expansion of the function, OR the corresponding outputs of the decoder.
Leave remaining outputs of the decoder unconnected.

Using an n-output Decoder

Example

- Using a 3-to-8 decoder, design a logic circuit to realize the following Boolean function
- $F(A, B, C)=\Sigma m(2,3,5,6,7)$

Using an n-output Decoder

Example

- Using a 2-to-2 decoder, design a logic circuit to realize the following Boolean function

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,1,4,6,7)
$$

ASESSMENT

1. What is a Encoder?
2. Device which converts an input device state into a binary representation of ones or zeros is termed as
3. Encoder
4. Decoder
5. Multiplexer
6. Data selector
7. A decoder converts n inputs to \qquad outputs. $\left(2^{n}\right)$
8. -------------------- are building blocks of encoders.(Ans - OR gate)
9. Draw the block diagram of 2×4 decoder.

THANK YOU

