
Instruction-Level Parallelism: Concepts and Challenges:

Instruction-level parallelism (ILP) is the potential overlap the execution of

instructions using pipeline concept to improve performance of the system. The

various techniques that are used to increase amount of parallelism are reduces the

impact of data and control hazards and increases processor ability to exploit

parallelism

There are two approaches to exploiting ILP.

1. Static Technique – Software Dependent

2. Dynamic Technique – Hardware Dependent

The simplest and most common way to increase the amount of parallelism

is loop-level parallelism. Here is a simple example of a loop, which adds two

1000- element arrays, that is completely parallel:

for (i=1;i<=1000; i=i+1) x[i] = x[i] + y[i];

CPI (Cycles per Instruction) for a pipelined processor is the sum of the base

CPI and all contributions from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control

stalls

The ideal pipeline CPI is a measure of the maximum performance attainable by

the implementation. By reducing each of the terms of the right-hand side, we

minimize the overall pipeline CPI and thus increase the IPC (Instructions per

Clock).

1 Various types of Dependences in ILP.

Data Dependence and Hazards:

To exploit instruction-level parallelism, determine which instructions can

be executed in parallel. If two instructions are parallel, they can execute

simultaneously in a pipeline without causing any stalls. If two instructions are

dependent they are not parallel and must be executed in order.

There are three different types of dependences: data dependences (also

called true data dependences), name dependences, and control dependences.

Data Dependences:

An instruction j is data dependent on instruction i if either of the following

holds:

• Instruction i produces a result that may be used by instruction j, or

• Instruction j is data dependent on instruction k, and instruction k is data

dependent on

instruction i.

The second condition simply states that one instruction is dependent on another

if there exists a chain of dependences of the first type between the two

instructions. This dependence chain can be as long as the entire program.

For example, consider the following code sequence that increment a vector of

values in memory (starting at 0(R1) and with the last element at 8(R2)) by a scalar

in register F2:

Loop: L.D F0,0(R1) ; F0=array element

ADD.D F4,F0,F2 ; add scalar in F2

S.D F4,0(R1) ; store result

DADDUI R1,R1,#-8 ; decrement pointer 8 bytes

BNE R1,R2,LOOP ; branch R1!=zero

The dependence implies that there would be a chain of one or more data

hazards between the two instructions. Executing the instructions simultaneously

will cause a processor with pipeline interlocks to detect a hazard and stall, thereby

reducing or eliminating the overlap. Dependences are a property of programs.

Whether a given dependence results in an actual hazard being detected and

whether that hazard actually causes a stall are properties of the pipeline

organization. This difference is critical to understanding how instruction-level

parallelism can be exploited.

The presence of the dependence indicates the potential for a hazard, but the

actual hazard and the length of any stall is a property of the pipeline. The

importance of the data dependences is that a dependence

(1) indicates the possibility of a hazard,

(2) Determines the order in which results must be calculated, and

(3) Sets an upper bound on how much parallelism can possibly be

exploited.

Name Dependences

The name dependence occurs when two instructions use the same register

or memory location, called a name, but there is no flow of data between the

instructions associated with that name.

There are two types of name dependences between an instruction i that

precede instruction j in program order:

• An antidependence between instruction i and instruction j occurs when

instruction j writes a register or memory location that instruction i reads. The

original ordering must be preserved to ensure that i reads the correct value.

• An output dependence occurs when instruction i and instruction j write

the same register or memory location. The ordering between the instructions must

be preserved to ensure that the value finally written corresponds to instruction j.

Both anti-dependences and output dependences are name dependences, as

opposed to true data dependences, since there is no value being transmitted

between the instructions. Since a name dependence is not a true dependence,

instructions involved in a name dependence can execute simultaneously or be

reordered, if the name (register number or memory location) used in the

instructions is changed so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is called

register renaming. Register renaming can be done either statically by a compiler

or dynamically by the hardware. Before describing dependences arising from

branches, let’s examine the relationship between dependences and pipeline data

hazards.

Control Dependences:

A control dependence determines the ordering of an instruction, i, with

respect to a branch instruction so that the instruction i is executed in correct

program order. Every

Instruction, except for those in the first basic block of the program, is control

dependent on some set of branches, and, in general, these control dependences

must be preserved to preserve

program order. One of the simplest examples of a control dependence is the

dependence of the statements in the “then” part of an if statement on the branch.

For example, in the code segment:

if p1 { S1; };

if p2 { S2;}

S1 is control dependent on p1, and S2is control dependent on p2 but not on

p1. In general, there are two constraints imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled by the branch. For

example, we cannot take an instruction from the then-portion of an if-statement

and move it before the ifstatement.

2. An instruction that is not control dependent on a branch cannot be moved

after the branch so that its execution is controlled by the branch. For example, we

cannot take a statement before the if-statement and move it into the then-portion.

Control dependence is preserved by two properties in a simple pipeline,

First, instructions execute in program order. This ordering ensures that an

instruction that occurs before a branch is executed before the branch. Second, the

detection of control or branch hazards ensures that an instruction that is control

dependent on a branch is not executed until the branch direction is known.

2. Data Hazard and various hazards in ILP.

Data Hazards

A hazard is created whenever there is dependence between instructions,

and they are close enough that the overlap caused by pipelining, or other

reordering of instructions, would change the order of access to the operand

involved in the dependence.

Because of the dependence, preserve order that the instructions would

execute in, if executed sequentially one at a time as determined by the original

source program. The goal of both our software and hardware techniques is to

exploit parallelism by preserving program order only where it affects the outcome

of the program. Detecting and avoiding hazards ensures that necessary program

order is preserved.

Data hazards may be classified as one of three types, depending on the

order of read and write accesses in the instructions.

Consider two instructions i and j, with i occurring before j in program order. The

possible data hazards are RAW (read after write) — j tries to read a source

before i write it, so j incorrectly gets the old value. This hazard is the most

common type and corresponds to true data dependence. Program order must be

preserved to ensure that j receives the value from i. In the simple common five-

stage static pipeline a load instruction followed by an integer ALU instruction

that directly uses the load result will lead to a RAW hazard.

WAW (write after write)

j tries to write an operand before it is written by i. The writes end up being

performed in the wrong order, leaving the value written by i rather than the value

written by j in the destination. This hazard corresponds to output dependence.

WAW hazards are present only in pipelines that write in more than one pipe stage

or allow an instruction to proceed even when a previous instruction is stalled. The

classic five-stage integer pipeline writes a register only in the WB stage and

avoids this class of hazards.

WAR (write after read)

j tries to write a destination before it is read by i, so i incorrectly gets the

new value. This hazard arises from antidependence. WAR hazards cannot occur

in most static issue pipelines even deeper pipelines or floating point pipelines

because all reads are early (in ID) and all writes are late (in WB). A WAR hazard

occurs either when there are some instructions that write results early in the

instruction pipeline, and other instructions that read a source late in the pipeline

or when instructions are reordered.

