
 STACKS AND QUEUES

Stack:

In the pushdown stacks only two operations are allowed: push the item into the stack, and pop the item out of the
stack. A stack is a limited access data structure - elements can be added and removed from the stack only at the top.
push adds an item to the top of the stack, pop removes the item from the top. A helpful analogy is to think of a stack
of books; you can remove only the top book, also you can add a new book on the top.

Queue:

An excellent example of a queue is a line of students in the food court of the UC. New additions to a line made to the

back of the queue, while removal (or serving) happens in the front. In the queue only two operations are allowed

enqueue and dequeue. Enqueue means to insert an item into the back of the queue, dequeue means removing the

front item. The picture demonstrates the FIFO access. The difference between stacks and queues is in removing. In a

stack we remove the item the most recently added; in a queue, we remove the item the least recently added.

Difference between Stack and Queue Data Structures

Stack:- A stack is a linear data structure in which elements can be inserted and deleted only from one
side of the list, called the top. A stack follows the LIFO (Last In First Out) principle, i.e., the element
inserted at the last is the first element to come out. The insertion of an element into stack is
called push operation, and deletion of an element from the stack is called pop operation. In stack we
always keep track of the last element present in the list with a pointer called top.
The diagrammatic representation of stack is given below:

https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://everythingcomputerscience.com/images/stackImg.jpg
https://everythingcomputerscience.com/discrete_mathematics/queueImg.jpg

Queue:- A queue is a linear data structure in which elements can be inserted only from one side of the
list called rear, and the elements can be deleted only from the other side called the front. The queue data
structure follows the FIFO (First In First Out) principle, i.e. the element inserted at first in the list, is the
first element to be removed from the list. The insertion of an element in a queue is called
an enqueue operation and the deletion of an element is called a dequeue operation. In queue we always
maintain two pointers, one pointing to the element which was inserted at the first and still present in the
list with the front pointer and the second pointer pointing to the element inserted at the last with
the rear pointer.
The diagrammatic representation of queue is given below:

https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

Difference between Stack and Queue Data Structures

STACKS QUEUES

Stacks are based on the LIFO principle, i.e.,

the element inserted at the last, is the first

element to come out of the list.

Queues are based on the FIFO principle, i.e., the element

inserted at the first, is the first element to come out of the list.

Insertion and deletion in stacks takes place

only from one end of the list called the top.

Insertion and deletion in queues takes place from the opposite

ends of the list. The insertion takes place at the rear of the list

and the deletion takes place from the front of the list.

Insert operation is called push operation. Insert operation is called enqueue operation.

Delete operation is called pop operation. Delete operation is called dequeue operation.

STACKS QUEUES

In stacks we maintain only one pointer to

access the list, called the top, which always

points to the last element present in the

list.

In queues we maintain two pointers to access the list. The front

pointer always points to the first element inserted in the list and

is still present, and the rear pointer always points to the last

inserted element.

Array implementation of Stack

In array implementation, the stack is formed by using the array. All the operations regarding the stack are

performed using arrays. Lets see how each operation can be implemented on the stack using array data

structure.

Adding an element onto the stack (push operation)

Adding an element into the top of the stack is referred to as push operation. Push operation involves following

two steps.

1. Increment the variable Top so that it can now refere to the next memory location.

2. Add element at the position of incremented top. This is referred to as adding new element at the top of

the stack.

Stack is overflown when we try to insert an element into a completely filled stack therefore, our main function

must always avoid stack overflow condition.

Algorithm:

1. begin

2. if top = n then stack full

3. top = top + 1

4. stack (top) : = item;

5. end

Time Complexity : o(1)

Deletion of an element from a stack (Pop operation)

Deletion of an element from the top of the stack is called pop operation. The value of the variable top will be
incremented by 1 whenever an item is deleted from the stack. The top most element of the stack is stored in an

another variable and then the top is decremented by 1. the operation returns the deleted value that was stored in

another variable as the result.

The underflow condition occurs when we try to delete an element from an already empty stack.

Algorithm :

1. begin

2. if top = 0 then stack empty;

3. item := stack(top);

4. top = top - 1;

5. end;

Time Complexity : o(1)

Visiting each element of the stack (Peek operation)

Peek operation involves returning the element which is present at the top of the stack without deleting it.

Underflow condition can occur if we try to return the top element in an already empty stack.

Algorithm :

PEEK (STACK, TOP)

1. Begin

2. if top = -1 then stack empty

3. item = stack[top]

4. return item

5. End

Time complexity: o(n)

Linked list implementation of stack

Instead of using array, we can also use linked list to implement stack. Linked list allocates the memory

dynamically. However, time complexity in both the scenario is same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in the memory. Each node

contains a pointer to its immediate successor node in the stack. Stack is said to be overflown if the space left in the

memory heap is not enough to create a node.

The top most node in the stack always contains null in its address field. Lets discuss the way in which, each

operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a stack in linked list

implementation is different from that of an array implementation. In order to push an element onto the stack, the

following steps are involved.

1. Create a node first and allocate memory to it.

2. If the list is empty then the item is to be pushed as the start node of the list. This includes assigning value

to the data part of the node and assign null to the address part of the node.

3. If there are some nodes in the list already, then we have to add the new element in the beginning of the

list (to not violate the property of the stack). For this purpose, assign the address of the starting element

to the address field of the new node and make the new node, the starting node of the list.

Time Complexity : o(1)

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the linked

list implementation of stack is different from that in the array implementation. In order to pop an element

from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try

to pop from an already empty stack. The stack will be empty if the head pointer of the list points

to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only

from one end, therefore, the value stored in the head pointer must be deleted and the node must

be freed. The next node of the head node now becomes the head node.

Time Complexity : o(n)

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the form of

stack. For this purpose, we need to follow the following steps.

1. Copy the head pointer into a temporary pointer.

2. Move the temporary pointer through all the nodes of the list and print the value field attached to

every node.

Time Complexity : o(n)

Array representation of Queue

We can easily represent queue by using linear arrays. There are two variables i.e. front and rear, that are

implemented in the case of every queue. Front and rear variables point to the position from where insertions and
deletions are performed in a queue. Initially, the value of front and queue is -1 which represents an empty queue.

Array representation of a queue containing 5 elements along with the respective values of front and rear, is shown

in the following figure.

The above figure shows the queue of characters forming the English word "HELLO". Since, No deletion is

performed in the queue till now, therefore the value of front remains -1 . However, the value of rear increases by

one every time an insertion is performed in the queue. After inserting an element into the queue shown in the

above figure, the queue will look something like following. The value of rear will become 5 while the value of front

remains same.

After deleting an element, the value of front will increase from -1 to 0. however, the queue will look something like

following.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front and rear to 0 and

insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear as the index.

Algorithm

o Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

o Step 3: Set QUEUE[REAR] = NUM

o Step 4: EXIT

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end of the queue at each time.

Algorithm

o Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

o Step 2: EXIT

Drawback of array implementation

Although, the technique of creating a queue is easy, but there are some drawbacks of using this technique to

implement a queue.

o Memory wastage : The space of the array, which is used to store queue elements, can never be

reused to store the elements of that queue because the elements can only be inserted at front end and

the value of front might be so high so that, all the space before that, can never be filled.

o

The above figure shows how the memory space is wasted in the array representation of queue. In the above figure,
a queue of size 10 having 3 elements, is shown. The value of the front variable is 5, therefore, we can not reinsert

the values in the place of already deleted element before the position of front. That much space of the array is
wasted and can not be used in the future (for this queue).

o Deciding the array size

On of the most common problem with array implementation is the size of the array which requires to be declared in

advance. Due to the fact that, the queue can be extended at runtime depending upon the problem, the extension
in the array size is a time taking process and almost impossible to be performed at runtime since a lot of

reallocations take place. Due to this reason, we can declare the array large enough so that we can store queue
elements as enough as possible but the main problem with this declaration is that, most of the array slots (nearly

half) can never be reused. It will again lead to memory wastage.

Linked List implementation of Queue

Due to the drawbacks discussed in the previous section of this tutorial, the array implementation can not be used

for the large scale applications where the queues are implemented. One of the alternative of array implementation

is linked list implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n) while the time requirement for

operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Each element of

the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear pointer. The front
pointer contains the address of the starting element of the queue while the rear pointer contains the address of the

last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear both are NULL, it

indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations are Insertion and

Deletion.

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new element will be the

last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.

1. Ptr = (struct node *) malloc (sizeof(struct node));

There can be the two scenario of inserting this new node ptr into the linked queue.

In the first scenario, we insert element into an empty queue. In this case, the condition front = NULL becomes
true. Now, the new element will be added as the only element of the queue and the next pointer of front and rear

pointer both, will point to NULL.

1. ptr -> data = item;

2. if(front == NULL)

3. {

4. front = ptr;

5. rear = ptr;

6. front -> next = NULL;

7. rear -> next = NULL;

8. }

In the second case, the queue contains more than one element. The condition front = NULL becomes false. In this

scenario, we need to update the end pointer rear so that the next pointer of rear will point to the new node ptr.
Since, this is a linked queue, hence we also need to make the rear pointer point to the newly added node ptr. We

also need to make the next pointer of rear point to NULL.

1. rear -> next = ptr;

2. rear = ptr;

3. rear->next = NULL;

In this way, the element is inserted into the queue. The algorithm and the C implementation is given as follows.

Algorithm
o Step 1: Allocate the space for the new node PTR

o Step 2: SET PTR -> DATA = VAL

o Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

o Step 4: END

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstly, we need to
check either the list is empty or not. The condition front == NULL becomes true if the list is empty, in this case ,

we simply write underflow on the console and make exit.

Otherwise, we will delete the element that is pointed by the pointer front. For this purpose, copy the node pointed
by the front pointer into the pointer ptr. Now, shift the front pointer, point to its next node and free the node

pointed by the node ptr. This is done by using the following statements.

1. ptr = front;

2. front = front -> next;

3. free(ptr);

The algorithm and C function is given as follows.

Algorithm
o Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

o Step 2: SET PTR = FRONT

o Step 3: SET FRONT = FRONT -> NEXT

o Step 4: FREE PTR

o Step 5: END

CIRCULAR QUEUES

Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In
First Out) principle and the last position is connected back to the first position to make a circle. It is also
called ‘Ring Buffer’.

In a normal Queue, we can insert elements until queue becomes full. But once queue becomes full, we
can not insert the next element even if there is a space in front of queue.

 Deletions and insertions can only be performed at front and rear end respectively, as far as linear queue is

concerned.

Consider the queue shown in the following figure.

The Queue shown in above figure is completely filled and there can't be inserted any more element due to the

condition rear == max - 1 becomes true.

However, if we delete 2 elements at the front end of the queue, we still can not insert any element since the

condition rear = max -1 still holds.

This is the main problem with the linear queue, although we have space available in the array, but we can not

insert any more element in the queue. This is simply the memory wastage and we need to overcome this problem.

One of the solution of this problem is circular queue. In the circular queue, the first index comes right after the last

index. You can think of a circular queue as shown in the following figure.

Circular queue will be full when front = -1 and rear = max-1. Implementation of circular queue is similar to that

of a linear queue. Only the logic part that is implemented in the case of insertion and deletion is different from that

in a linear queue.

Complexity

Time Complexity

Front O(1)

Rear O(1)

enQueue() O(1)

deQueue() O(1)

Insertion in Circular queue

There are three scenario of inserting an element in a queue.

1. If (rear + 1)%maxsize = front, the queue is full. In that case, overflow occurs and therefore, insertion

can not be performed in the queue.

2. If rear != max - 1, then rear will be incremented to the mod(maxsize) and the new value will be

inserted at the rear end of the queue.

3. If front != 0 and rear = max - 1, then it means that queue is not full therefore, set the value of rear to

0 and insert the new element there.

Algorithm to insert an element in circular queue
o Step 1: IF (REAR+1)%MAX = FRONT

Write " OVERFLOW "

Goto step 4

[End OF IF]

o Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE IF REAR = MAX - 1 and FRONT ! = 0

SET REAR = 0

ELSE

SET REAR = (REAR + 1) % MAX

[END OF IF]

o Step 3: SET QUEUE[REAR] = VAL

o Step 4: EXIT

Algorithm to delete an element from a circular queue

To delete an element from the circular queue, we must check for the three following conditions.

1. If front = -1, then there are no elements in the queue and therefore this will be the case of an underflow

condition.

2. If there is only one element in the queue, in this case, the condition rear = front holds and therefore, both

are set to -1 and the queue is deleted completely.

3. If front = max -1 then, the value is deleted from the front end the value of front is set to 0.

4. Otherwise, the value of front is incremented by 1 and then delete the element at the front end.

Algorithm
o Step 1: IF FRONT = -1

Write " UNDERFLOW "

Goto Step 4

[END of IF]

o Step 2: SET VAL = QUEUE[FRONT]

o Step 3: IF FRONT = REAR

SET FRONT = REAR = -1

ELSE

IF FRONT = MAX -1

SET FRONT = 0

ELSE

SET FRONT = FRONT + 1

[END of IF]

[END OF IF]

o Step 4: EXIT

Priority Queue

a priority queue is an abstract data type which is like a regular queue or stack data structure, but where additionally

each element has a "priority" associated with it. In a priority queue, an element with high priority is served before an

element with low priority. In some implementations, if two elements have the same priority, they are served according

to the order in which they were enqueued, while in other implementations, ordering of elements with the same priority

is undefined.

 OR

Priority Queue is an extension of queue with following properties.
1. Every item has a priority associated with it.
2. An element with high priority is dequeued before an element with low priority.
3. If two elements have the same priority, they are served according to their order in the queue.

https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://quiz.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

In the below priority queue, element with maximum ASCII value will have the highest priority.

A typical priority queue supports following operations.
insert(item, priority): Inserts an item with given priority.
getHighestPriority(): Returns the highest priority item.
deleteHighestPriority(): Removes the highest priority item.

How to implement priority queue?
Using Array: A simple implementation is to use array of following structure.
struct item {

 int item;

 int priority;

}

insert() operation can be implemented by adding an item at end of array in O(1) time.

getHighestPriority() operation can be implemented by linearly searching the highest priority item in array.
This operation takes O(n) time.

deleteHighestPriority() operation can be implemented by first linearly searching an item, then removing
the item by moving all subsequent items one position back.

We can also use Linked List, time complexity of all operations with linked list remains same as array. The
advantage with linked list is deleteHighestPriority() can be more efficient as we don’t have to move items.

	Stack:
	Queue:
	Difference between Stack and Queue Data Structures
	Array implementation of Stack
	Adding an element onto the stack (push operation)
	Deletion of an element from a stack (Pop operation)
	Visiting each element of the stack (Peek operation)

	Linked list implementation of stack
	Adding a node to the stack (Push operation)
	Deleting a node from the stack (POP operation)

	Array representation of Queue
	Algorithm to insert any element in a queue
	Algorithm
	Algorithm to delete an element from the queue
	Algorithm (1)
	Drawback of array implementation

	Linked List implementation of Queue
	Operation on Linked Queue
	Insert operation
	Algorithm
	Deletion
	Algorithm (1)
	Complexity
	Insertion in Circular queue
	Algorithm to insert an element in circular queue
	Algorithm to delete an element from a circular queue
	Algorithm (2)

	Priority Queue

