
Reinforcement learning 

Prepared by

P.Subhashree



Temporal Difference Learning

• Model is defined by the reward and next state probability distributions, when we know 
these, we can solve for the optimal policy using dynamic programming. However, these 
methods are costly, and we seldom have such perfect knowledge of the environment.

• The more interesting and realistic application of reinforcement learning is when we do not 
have the model. This requires exploration of the environment to query the model. We first 
discuss how this exploration is done and later see model-free learning algorithms for 
deterministic and nondeterministic cases. Though we are not going to assume full 
knowledge of the environment model, we will however require that it be stationary.

• when we explore and get to see the value of the next state and reward, we use this 
information to update the value of the current state. These algorithms are called temporal 
difference algorithms because what we do is look at the difference between our current 
estimate of the value of a state (or a state-action pair) and the discounted value of the next 
state and the reward received. 



1. Exploration Strategies

• To explore, one possibility is to use ǫ-greedy search where with probability ǫ, we choose 
one action uniformly randomly among all possible actions, namely, explore, and with 
probability 1 − ǫ, we choose the best action, namely, exploit. 

• We do not want to continue exploring indefinitely but start exploiting once we do enough 
exploration; for this, we start with a high ǫ value and gradually decrease it. We need to 
make sure that our policy is soft, that is, the probability of choosing any action a ∈A in 
state s ∈ S is greater than 0.

• We can choose probabilistically, using the softmax function to convert values to 
probabilities



• and then sample according to these probabilities. To gradually move from exploration to 
exploitation, we can use a “temperature” variable T and define the probability of choosing 
action an as

• When T is large, all probabilities are equal and we have exploration. with a large T and 
decrease it gradually, a procedure named annealing, which in this case moves from 
exploration to exploitation smoothly in time.



2. Deterministic Rewards and Actions 

• the simpler deterministic case, where at any state-action pair, there is a single reward and 
the next state possible.

• and we simply use this as an assignment to update Q(st, at ). When in state st, we choose 
action by one of the stochastic strategies we saw earlier, which returns a reward rt+1 and 
takes us to state st+1. We then update the value of the previous action as

• where the hat denotes that the value is an estimate. ˆQ(st+1, at+1) is a later value and has 
a higher chance of being correct. We discount this by γ, add the immediate reward (if 
any), and take this as the new estimate for the previous ˆQ(st, at ). 



• This is called a backup because it can be viewed as taking the estimated value of an action 
in the next time step and “backing it up” to revise the estimate for the value of a current 
action.



3.Nondeterministic Rewards and Actions

• If the rewards and the result of actions are not deterministic, then we have a probability 
distribution for the reward p(rt+1|st, at ) from which rewards are sampled, and there is a 
probability distribution for the next state P(st+1|st, at ).

• These help us model the uncertainty in the system that may be due to forces we cannot 
control in the environment: for instance, our opponent in chess, the dice in backgammon, 
or our lack of knowledge of the system. 

• For example, we may have an imperfect robot which sometimes fails to go in the intended 
direction and deviates or advances shorter or longer than expected. In such a case, we 
have



• We cannot do a direct assignment in this case because we may receive different rewards 
for the same state and action or move to different next states. What we do is keep a 
running average. This is known as the Q learning algorithm: 



• We think of rt+1+γ maxat+1 ˆQ(st+1, at+1) 
values as a sample of instances for each (st, 
at ) pair and we would like ˆQ(st, at ) to 
converge to its mean. As usual, η is 
gradually decreased in time for 
convergence, and it has been shown that 
this algorithm converges to the optimal Q∗
values.

• Off-policy method as the value of the best 
next action is used without using the policy. 
In an on-policy method, the policy is used 
to determine also the next action. The on-
policy version of Q learning is the Sarsa
algorithm whose pseudocode.



• Sarsa converges with probability 1 to the optimal policy and state action values if 
a GLIE policy is employed to choose actions. A GLIE (greedy in the limit with 
infinite exploration) policy is where (1) all state-action pairs are visited an infinite 
number of times, and (2) the policy converges in the limit to the greedy policy 
(which can be arranged, e.g., with ǫ-greedy policies by setting ǫ = 1/t).

• The same idea of temporal difference can also be used to learn V (s) values, 
instead of Q(s, a). TD learning uses the following update rule to update a state 
value: 

• This again is the delta rule where rt+1 + γV (st+1) is the better, later prediction 
and V (st ) is the current estimate. Their difference is the temporal difference, and 
the update is done to decrease this difference. The update factor η is gradually 
decreased, and TD is guaranteed to converge to the optimal value function V ∗(s).



4.Eligibility Traces 

• The previous algorithms are one-step—that is, the temporal difference is used to update 
only the previous value (of the state or state-action pair). An eligibility trace is a record of 
the occurrence of past visits that enables us to implement temporal credit assignment, 
allowing us to update the values of previously occurring visits as well. We discuss how 
this is done with Sarsa to learn Q values; adapting this to learn V values is 
straightforward.



• To store the eligibility trace, we require an additional memory variable associated with 
each state-action pair, e(s, a), initialized to 0. When the state-action pair (s, a) is visited, 
namely, when we take action in state s, its eligibility is set to 1; the eligibilities of all other 
state-action pairs are multiplied by γλ. 0 ≤ λ ≤ 1 is the trace decay parameter.

• If a state-action pair has never been visited, its eligibility remains 0; if it has been, as time 
passes and other state-actions are visited, its eligibility decays depending on the value of γ 
and λ.



In Sarsa with an eligibility trace, named Sarsa(λ), all 
state-action pairs are updated as

• This updates all eligible state-action pairs, where the 
update depends on how far they have occurred in the 
past. The value of λ defines the temporal credit: if λ 
= 0, only a one-step update is done.



• As λ gets closer to 1, more of the previous steps are considered. When λ = 1, all previous 
steps are updated and the credit given to them falls only by γ per step.

• In online updating, all eligible values are updated immediately after each step; in offline 
updating, the updates are accumulated and a single update is done at the end of the 
episode. Online updating takes more time but converges faster.

Prepared by

P.Subhashree


