
Generalization

Prepared by

P.Subhashree



• we assumed that the Q(s, a) values (or V (s) if we are estimating values of states) are 
stored in a lookup table, and the algorithms we considered earlier are called tabular 
algorithms. There are several problems with this approach: 

(1) when the number of states and the number of actions is large, the size of the table may 
become quite large; 

(2) states and actions may be continuous, for example, turning the steering wheel by a 
certain angle, and using a table, they should be discretized which may cause an error; and

(3) when the search space is large, too many episodes may be needed to fill in all the entries 
of the table with acceptable accuracy. 

• Instead of storing the Q values as they are, we can consider this a regression problem. 
This is a supervised learning problem where we define a regressor Q(s, a|θ), taking s and 
an as inputs and parameterising by a vector of parameters, θ, to learn Q values.

For example, this can be an artificial neural network with s and an as its inputs, one 
output, and θ its connection weights.



• A good function approximator has the usual advantages and solves the problems 
discussed previously. A good approximation may be achieved with a simple model 
without explicitly storing the training instances; it can use continuous inputs and allow 
generalization. If we know that similar (s, a) pairs have similar Q values, we can 
generalize from past cases and come up with good Q(s, a) values even if that state-action 
pair has never been encountered before.

• To be able to train the regressor, we need a training set. In the case of Sarsa(0), we saw 
before that we would like Q(st, at ) to get close to rt+1 + γQ(st+1, at+1). So, we can form 
a set of training samples where the input is the state-action pair (st, at ) and the required 
output is rt+1 + γQ(st+1, at+1). We can write the squared error as:



• Training sets can similarly be defined for Q(0) and TD(0), where in the latter case we 
learn V (s), and the required output is rt+1 − γV (st+1). Once such a set is ready, we can 
use any supervised learning algorithm for learning the training set.

• If we are using a gradient-descent method, as in training neural networks, the parameter 
vector is updated as 

• This is a one-step update. In the case of Sarsa(λ), the eligibility trace is also taken into 
account: 

where the temporal difference error is

and the vector of eligibilities of parameters is updated as



• with e0 all zeros. In the case of a tabular algorithm, the eligibilities are stored for the 
state-action pairs because they are the parameters (stored as a table). In the case of an 
estimator, eligibility is associated with the parameters of the estimator. We also note that 
this is very similar to the momentum method for stabilizing backpropagation.

• The difference is that in the case of momentum previous weight changes are remembered, 
whereas here previous gradient vectors are remembered. Depending on the model used 
for Q(st, at ), for example, a neural network.

• In theory, any regression method can be used to train the Q function, but the particular 
task has several requirements. First, it should allow generalization; we need to guarantee 
that similar states and actions have similar Q values. 

• This also requires a good coding of s and a, as in any application, to make the similarities 
apparent. Second, reinforcement learning updates provide instances one by one and not as 
a whole training set, and the learning algorithm should be able to do individual updates to 
learn the new instance without forgetting what has been learned before.



• For example, a multilayer perceptron using backpropagation can be trained with a single 
instance only if a small learning rate is used. Or, such instances may be collected to form 
a training set and learned altogether but this slows down learning as no learning happens 
while a sufficiently large sample is being collected. 

• Because of these reasons, it seems a good idea to use local learners to learn the Q values. 

For example, 

in radial basis functions, information is localized and when a new instance is 
learned, only a local part of the learner is updated without possibly corrupting the 
information in another part. The same requirements apply if we are estimating the state 
values as V (st|θ).



Partially Observable States

The Setting 

• In certain applications, the agent does not know the state exactly. It is equipped with 
sensors that return an observation, which the agent then uses to estimate the state. Let us 
say we have a robot that navigates in a room. 

• The robot may not know its exact location in the room, or what else is there in the room. 
The robot may have a camera with which sensory observations are recorded. This does 
not tell the robot its state exactly but gives some indication as to its likely state.

For example, the robot may only know that there is an obstacle to its right.

• The setting is like a Markov decision process, except that after taking an action at, the 
new state st+1 is not known, but we have an observation ot+1 that is a stochastic function 
of st and at p(ot+1|st, at ). This is called a partially observable MDP (POMDP).



• If ot+1 = st+1, then POMDP reduces to MDP. This is just like the distinction between 
observable and hidden Markov models and the solution is similar; from the observation, 
we need to infer the state (or rather a probability distribution for the states) and then act 
based on this.

• If the agent believes that it is in state s1 with probability 0.4 and in state s2 with 
probability 0.6, then the value of any action is 0.4 times the value of the action in s1 plus 
0.6 times the value of the action in s2.

• The Markov property does not hold for observations. The next state observation does not 
only depend on the current action and observation. When there is limited observation, two 
states may appear the same but are different and if these two states require different 
actions, this can lead to a loss of performance, as measured by the cumulative reward. 

• The agent should compress the past trajectory into a current unique estimate. These past 
observations can also be taken into account by taking a past window of observations as 
input to the policy, or one can use a recurrent neural network to maintain the state without 
forgetting past observations. 



• At any time, the agent may calculate the 
most likely state and take an action 
accordingly. Or it may take an action to 
gather information and reduce uncertainty, 
for example, searching for a landmark, or 
stopping to ask for directions.

• This implies the importance of the value of 
information, the value of information and 
indeed POMDPs can be modelled as 
dynamic influence diagrams. The agent 
chooses between actions based on the 
amount of information they provide, the 
amount of reward they produce, and how 
they change the state of the environment. 



• To keep the process Markov, the agent keeps an internal belief state bt that summarizes its 
experience. The agent has a state estimator that updates the belief state bt+1 based on the 
last action at, current observation ot+1, and its previous belief state bt . There is a policy π 
that generates the next action at+1 based on this belief state, as opposed to the actual state 
that we had in a completely observable environment.

• The belief state is a probability distribution over states of the environment given the 
initial belief state (before we did any actions) and the past observation-action history of 
the agent (without leaving out any information that could improve the agent’s 
performance). Q learning in such a case involves the belief in state-action pair values, 
instead of the actual state-action pairs:



Example: The Tiger Problem

• Let us say we are standing in front of two doors, one to our left and the other to our right, 
leading to two rooms. Behind one of the two doors, we do not know which, there is a 
crouching tiger, and behind the other, there is a treasure. If we open the door of the room 
where the tiger is, we get a large negative reward, and if we open the door of the treasure 
room, we get some positive reward.

• The hidden state, zL, is the location of the tiger. Let us say p denotes the probability that 
tiger is in the room to the left and therefore, the tiger is in the room to the right with a 
probability 1 − p: 

• The two actions are aL and aR, which respectively correspond to opening the left or the 
right door. The rewards are



• We can calculate the expected reward for the two actions. There are no future rewards 
because the episode ends once we open one of the doors.

• Given these rewards, if p is close to 1, if we believe that there is a high chance that the 
tiger is on the left, the right action will be to choose the right door, and, similarly, for p 
close to 0, it is better to choose the left door.

• The two intersect for p around 0.5, and there the expected reward is approximately −10. 
The fact that the expected reward is negative when p is around 0.5 (when we have 
uncertainty) indicates the importance of collecting information. 



• If we can add sensors to decrease uncertainty— that is, move p away from 0.5 to either 
close to 0 or close to 1—we can take actions with high positive rewards. 

• That sensing action, aS, may have a small negative reward: R(aS ) = −1; this may be 
considered as the cost of sensing or equivalent to discounting future reward by γ < 1 
because we are postponing taking the real action (of opening one of the doors).


