Database Management and Attribute Data in GIS

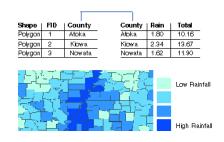
I. Introduction

- a. Spatial Data geometry and positions of map features
 - i. E.g. line layer representing county roads
- b. Attribute Data characteristics of features
 - i. E.g. information attached to roads including street name, address ranges, zip codes, road type, etc.
- c. Georelational Data Model attributes and map elements are stored separately and linked by index of a common feature ID code.
 - i. Synchronized indexing between feature and attribute files allows:
 - 1. Queries questions of data and multiple groups of data and how they relate
 - 2. Storing of data, retrieval
- d. Raster Model attributes are attached to grid cells directly, and stored in the same file (i.e. no multiple files)

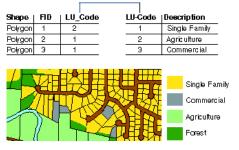
II. Definitions

- a. Data Tables matrix of rows and columns
 - i. Rows = records
 - ii. Columns = fields
- b. Feature Attribute Table connected to map elements and spatial information
 - i. Map elements linked to table attributes by Feature ID
- c. Nonspatial Data Table isolated matrix of information not attached to map elements or spatial information
- d. Type of Attribute Data
 - i. Categorical Data
 - 1. Nominal data-categories or classes
 - 2. Ordinal data ranking information (low, moderate, high)
 - ii. Numeric Data
 - 1. Interval data ranges of numerical values
 - 2. Ratio data numerical values
- III. Geodatabase-attributes are managed in tables based on a series of simple yet essential relational data concepts;
 - a. Tables contain rows (records), All rows in a table have the same columns.
 - b. Each column (fields) has a data type, such as integer, decimal number, character, and date.
 - c. A series of relational functions and operators (such as SQL) is available to operate on the tables and their data elements.

d. Attribute data types in the geodatabase


- i. Numbers: Can be one of four numeric data types:
 - 1. short integers-numbers without decimals (e.g. 2, 3, 4; range -32,768 to 32,767)
 - 2. long integers-numbers without decimals (e.g. 12,345,678; range 2,147,483,648 to 2,147,483,647)
 - 3. single-precision floating-point numbers (often referred to as floats; decimal-based numbers, e.g. 3.456; range = Approximately -3.4E38 to 1.2E38),
 - 4. double-precision floating-point numbers (commonly called doubles; range = Approximately -2.2E308 to 1.8E308).
 - 5. Number Field Definitions
 - a. "Precision" = field length (number of characters in field)
 - i. Single Float: precision = 1-6
 - ii. Double Float: precision = 7+

- b. "Scale" = No. of decimal places
 - i. Short integer scale = 0
 - ii. Long integer scale = 0
 - iii. Single Precision Float = 1-6
 - iv. Double Precision Float 0+
- ii. Text (strings): Any set of alphanumeric characters of a certain length.
- iii. **Date:** Holds date and time data.
- e. Field Definitions
 - i. When creating new fields in a database, one must define the field type:
 - 1. Field name (column title)
 - 2. Width number of spaces reserved for the field (precision)
 - 3. Data type (numeric or string)
 - 4. Number of decimal digits (scale)
- IV. Database Management System (DBMS)
 - a. Software package that builds and manipulates databases
 - i. Tools: data input, search, query, retrieval, manipulation, output
 - 1. E.g. Microsoft Access, ORACLE
 - b. Geodatabase a software system that stores both the spatial (map elements) and attribute data tables in a single database
 - i. ArcGIS employs the geodatabase model
 - c. Relational Database Model
 - i. Flat file = all data contained in 1 table matrix
 - ii. Hierarchical Data data organized at many levels so that one-to-many associations can be determined
 - iii. Relational Database a collection of tables linked by relations; allows modular design and data management
 - iv. Key Fields one or more attribute fields whose values uniquely identify a record in a table
 - 1. Key fields link tables together into multidimensional, hierarchical models


Shape	ID	PIN	Area	Addr	Code
	1	334-1626-001	34-1626-001 7,342 341 Cherr		SFR
	2	334-1626-002	8,020	343 Cherry Ct.	UND
	3	334-1626-003	10,031	345 Cherry Ct.	SFR
	4	334-1626-004	9,254	347 Cherry Ct.	SFR •
	5	334-1626-005	8,856	348 Cherry Ct.	UND
	6	334-1626-006	9,975	346 Cherry Ct.	SFR
	7	334-1626-007	8,230	344 Cherry Ct.	SFR
	8	334-1626-008	8,645	342 Cherry Ct.	SFR

Related	PIN	Owner	Acq.Date	Assessed	TaxSta
ownership table	334-1626-001	G. Hall	1995/10/20	\$115,500.00	02
	334-1626-002	H. L Holmes	1993/10/06	\$24,375.00	01
	334-1626-003	W. Rodgers	1980/09/24	\$175,500.00	02
	334-1626-004	J. Williamson	1974/09/20	\$135,750.00	02
	334-1626-005	P. Goodman	1966/06/06	\$30,350.00	02
	334-1626-006	K. Staley	1942/10/24	\$120,750.00	02
	334-1626-007	J. Dormandy	1996/01/27	\$110,650.00	01
	334-1626-008	S. Gooley	2000/05/31	\$145,750.00	02

- V. Types of Database Relationships
 - a. One to one relations one record from one table directly related to one record from another table

b. One to many relations – one record in a table related to many records in another table

- c. Many to many relations many records of one table related to many records of another
- VI. Joining and Relation Tables (linking multiple tables together)
 - a. Join operation combines tables together via a key field; physical merging on tables.
 - i. One to one or many to one relationships
 - ii. Spatial Join associating data based on overlapping positions in space
 - 1. The closest feature to another feature
 - 2. What's inside a feature
 - 3. What intersects a feature
 - 4. How many points fall inside each polygon
 - b. Relate temporarily connects tow tables, but keeps them physically separate
 - i. Unlike joining tables, relating tables simply defines a relationship between two tables. The associated data isn't appended to the layer's attribute table like it is with a join. Instead, you can access the related data when you work with the layer's attributes.
- VII. Database Manipulation
 - a. Adding / removing fields
 - b. Adding / removing records
 - c. Computation of attribute data (arithmetic manipulation; field algebra; statistical summaries)
 - d. Sorting fields (ascending, descending)