
All you need to know about Recurrent 

Neural Networks 

A beginner’s guide into the implementation and data 

manipulation inside a RNN in TensorFlow 

 
Photo by Laurent Naville on Unsplash 

https://unsplash.com/@laurentnaville_1467602_sink?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral


Introduction 

Researchers came up with neural networks to model the behaviour 

of a human brain. But if you actually think about it, normal neural 

networks don’t really do that much justice to its original intention. 

The reason for this statement is that feedforward vanilla neural 

networks cannot remember the things it learns. Each iteration you 

train the network it starts fresh, it doesn’t remember what it saw in 

the previous iteration when you are processing the current set of 

data. This is a big disadvantage when identifying correlations and 

data patterns. This is where Recurrent Neural Networks (RNN)came 

into the picture. RNNs have a very unique architecture that helps 

them to model memory units (hidden state) that enable them to 

persist data, thus being able to model short term dependencies. Due 

to this reason, RNNs are extensively used in time-series forecasting 

to identify data correlations and patterns. 

Even though RNNs have been around for some time, everyone 

seems to have their own confusing way of explaining it’s architecture 

and no one really explains what happens behind the scenes. So let’s 

bridge the gap, shall we? This post is aimed at explaining the RNN 

architecture in a more granular level by going through its 

functionality. 

Is this for you? 

If you have blindly made simple RNN models using TensorFlow 

before and if you have been finding it hard to understand about what 



the inner workings of a RNN look like, then this article is just for 

you. 

End Goal? 

We will basically be explaining what happens behind the curtains 

when these two lines of TensorFlow code that are responsible for the 

declaration of the RNN and initiating the execution is run. 
cell = 

tf.contrib.rnn.BasicRNNCell(rnn_size,activation=tf.nn.tanh) 

 

val1, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) 

RNN Architecture 

If you ever searched for architectural information about RNNs, the 

architecture diagrams you might get are rather confusing if you start 

looking into them as a beginner. I will use an example approach to 

explain the RNN architecture. 

Before we get down to business, an important thing to note is that 

the RNN input needs to have 3 dimensions. Typically it would be 

batch size, the number of steps and number of features. The number 

of steps depicts the number of time steps/segments you will be 

feeding in one line of input of a batch of data that will be fed into the 

RNN. 

The RNN unit in TensorFlow is called the “RNN cell”. This name 

itself has created a lot of confusion among people. There are many 

questions on Stackoverflow that inquire if “RNN cell” refers to one 

single cell or the whole layer. Well, it’s more like the whole layer. 



The reason for this is that the connections in RNNs are recurrent, 

thus following a “feeding to itself” approach. Basically, the RNN 

layer is comprised of a single rolled RNN cell that unrolls according 

to the “number of steps” value (number of time steps/segments) you 

provide. 

As we mentioned earlier the main speciality in RNNs is the ability to 

model short term dependencies. This is due to the hidden state in 

the RNN. It retains information from one time step to another 

flowing through the unrolled RNN units. Each unrolled RNN unit 

has a hidden state. The current time steps hidden state is calculated 

using information of the previous time step’s hidden state and the 

current input. This process helps to retain information on what the 

model saw in the previous time step when processing the current 

time steps information. Also, something to note is that all the 

connections in RNN have weights and biases. The biases can be 

optional in some architectures. This process will be explained 

further in later parts of the article. 

Since you now have a basic idea, let’s break down the execution 

process with an example. Say your batch size is 6, RNN size is 7, the 

number of time steps/segments you would include in one input line 

is 5 and the number of features in one time step is 3. If this is the 

case, your input tensor (matrix) shape for one batch would look 

something like this: 

Tensor shape of one batch = (6,5,3) 

The data inside a batch would look something like this: 



 
Fig 01 : Data representation inside a batch of data 

Note: The data segmentation method used here is called the sliding 

window approach and is mostly used when doing time series 

analysis. You don’t have to worry about the data pre-processing 

process here. 

When first feeding the data into the RNN. It will have a rolled 

architecture as shown below: 



 
Fig 02: Rolled version of RNN 

But when the RNN starts to process the data it will unroll and 

produce outputs as shown below: 

 
Fig 03: Unrolled version of RNN 



Processing a batch: 

When you feed a batch of data into the RNN cell it starts the 

processing from the 1st line of input. Likewise, the RNN cell will 

sequentially process all the input lines in the batch of data that was 

fed and give one output at the end which includes all the outputs of 

all the input lines. 

Processing a single line of input: 

In order to process a line of input, the RNN cell unrolls “number of 

steps” times. You can see this in the above figure (Fig 03). Since we 

defined “number of steps” as 5, the RNN cell has been unrolled 5 

times. 

The execution process is as follows: 

 First, the initial hidden state (S), which is typically a vector of 

zeros and the hidden state weight (h) is multiplied and then the 

hidden state bias is added to the result. In the meantime, the 

input at the time step t ([1,2,3]) and the input weight (i) is 

multiplied and the input bias is added to that result. We can 

obtain the hidden state at time step t by sending the addition of 

the above two results through an activation function, typically 

tanh (f). 

 
Fig 04: Hidden state calculation of time step t 



 Then, to obtain the output at time step t, the hidden state (S) at 

time step t is multiplied by the output weight (O) at time step t 

and then the output bias is added to the result. 

 
Fig 05: Output calculation of time step t 

 When calculating the hidden state at time step t+1, the hidden 

state (S) at time step t is multiplied by the hidden state weight 

(h) and the hidden state bias is added to the result. Then as 

mentioned before the input at time step t+1 ([4,5,6]) will get 

multiplied by the input weight (i) and the input bias will be 

added to the result. These two results will then be sent through 

an activation function, typically tanh (f). 

 
Fig 06: Hidden state calculation of time step t+1 

 Then, to obtain the output at time step t+1, the hidden state (S) 

at time step t+1 is multiplied by the output weight (O) at time 

step t+1 and then the output bias is added to the result. As you 

can see, when producing the output of time step t+1 it not only 

uses the input data of time step t+1 but also uses information of 

data in time step t via the hidden state at time step t+1. 

 



Fig 07: Output calculation of time step t+1 

 This process will repeat for all the time steps 

After processing all time steps in one line of input in the batch, we 

will have 5 outputs of shape (1,7). So when all these outputs are 

concatenated together. the shape becomes (1,5,7). When all the 

input lines of the batch are done processing we get 6 outputs of size 

(1,5,7). Thus, the final output of the whole batch would be (6,5,7). 

Note: All the hidden state weights, output weights and input 

weights have the same value throughout all the connections in a 

RNN. 

Coming back to the 2 lines of code we stated earlier: 
cell = 

tf.contrib.rnn.BasicRNNCell(rnn_size,activation=tf.nn.tanh) 

 

val1, state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32) 

The 1st line basically defines the activation function and the RNN 

size of the RNN cell that we want to create. The 2nd line executes the 

processing procedure of the input data by feeding it into the RNN. 

The processing will happen according to what we discussed earlier. 

Finally, the output (value with shape (6,5,7) ) of that batch will be 

assigned to the “val1” variable. The final value of the hidden state 

will be assigned to the “state” variable. 

We have now come to the end of the article. In this article, we 

discussed the data manipulation and representation process inside 

of a RNN in TensorFlow. With all the provided information, I hope 



that now you have a good understanding of how RNNs work in 

TensorFlow. 
 


