

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB204 – LINEAR AND DIGITAL CIRCUITS

12/12/2022

DAC /16ECB204-LDC/N.Arunkumar.APi/ECE/SNSC II YEAR/ III SEMESTER

UNIT 2 – COMPARATORS AND SPECIAL FUNCTION IC's

TOPIC 6 – D/A converter – Types

WHAT IS A DAC?

- A Digital-to-analog converter(DAC) takes a digital code as its input and produce an analog voltage or current as its output
- This analog output is proportional to the digital input lacksquare

2/24

TYPES OF DACS

- Many types of DACs available.
- Usually switches, resistors, and op-amps used to implement conversion
- Two Types:
 - -Binary Weighted Resistor
 - -R-2R Ladder

- Utilizes a summing op-amp circuit
- Weighted resistors are used to distinguish each bit from the most significant to the least significant
- Transistors are used to switch between
 - V_{ref} and ground (bit high or low)

4/24

Smallest analog increment

corresponding to 1 LSB change

> An N-bit resolution can resolve 2^{N}

distinct analog levels

≻Common DAC has a 8-16 bit

resolution

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

a

5/24

- ► Assume Ideal Op-amp
- \blacktriangleright No current into
 - op-amp
- ► Utilizes a inverting weighted OP-AMP circuit.
- ► Weighted resistors are used to distinguish each bit from the MSB to the LSB.
- ► Virtual ground at inverting input

$$\succ V_{\rm out} = -IR_{\rm f}$$

6/24

▷ Voltages V_1 through V_n are V_{ref} if corresponding bit is high

Voltages V_1 through V_n are Ground if corresponding bit is low

 $> V_1$ is most significant bit

 $> V_n$ is least significant bit

MSB

$$V_{\text{out}} = -IR_{\text{f}} = -R_{\text{f}} \left(\frac{V_1}{R} + \frac{V_2}{2R} + \frac{V_3}{4R} + \dots + \frac{V_n}{2^{n-1}R} \right)$$

7/24

If $R_{\rm f} = R/2$

$$V_{\text{out}} = -IR_{\text{f}} = -\left(\frac{V_1}{2} + \frac{V_2}{4} + \frac{V_3}{8} + \dots + \frac{V_n}{2^n}\right)$$

For example, a 4-Bit converter yields

$$V_{\text{out}} = -V_{\text{ref}} \left(b_3 \frac{1}{2} + b_2 \frac{1}{4} + b_1 \frac{1}{8} + b_0 \frac{1}{16} \right)$$

Where b_3 corresponds to Bit-3, b_2 to Bit-2, etc.

8/24

ADVANTAGES

- Advantages
 - Simple Construction/Analysis
 - Fast Conversion

9/24

DISADVANTAGES

- Disadvantages
 - Requires large range of resistors (2000:1 for 12-bit DAC)

with necessary high precision for low resistors

- Requires low switch resistances in transistors
- Can be expensive. Therefore, usually limited to 8-bit resolution.

Activity

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

►Each corresponds to a switch:

 \succ If the bit is high, the corresponding switch is connected to the inverting input of the op-amp.

 \succ If the bit is low, the corresponding switch connected is ground.

bit

to

12/24

Current Dependent on bits position.

 \succ The current is divided by a factor of 2 at each node.

13/24

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

Op-Amp input

25

14/24

$$V_3 = \frac{1}{8}V_{\text{ref}}, V_2 = \frac{1}{4}V_{\text{ref}}, V_1 =$$

$$V_{\text{out}} = -R \left(b_3 \frac{V_{\text{ref}}}{2R} + b_2 \frac{V_{\text{ref}}}{4R} + b_1 \right)$$

Where b_3 corresponds to bit 3, b_2 to bit 2, etc.

If bit n is set, $b_n = 1$

If bit n is clear, $b_n=0$

 $=\frac{1}{2}V_{\rm ref}$

17/24

For a 4-Bit R-2R Ladder

$$V_{\text{out}} = -V_{\text{ref}} \left(b_3 \frac{1}{2} + b_2 \frac{1}{4} + b_1 \frac{1}{8} + b_0 \frac{1}{16} \right)$$

For general n-Bit R-2R Ladder or Binary Weighted Resister DAC

$$V_{\text{out}} = -V_{\text{ref}} \sum_{i=1}^{n} b_{n-i} \frac{1}{2^{i}}$$

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

- Advantages
 - -Only two resistor values (R and 2R)
 - -Does not require high precision resistors
- Disadvantage
 - -Lower conversion speed than binary

weighted DAC

19/24

APPLICATIONS

Digital Motor Control

Computer Printers

Sound Equipment (e.g. CD/MP3

Players, etc.)

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

APPLICATIONS

Digital Oscilloscopes

Signal Generators

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

APPLICATIONS

Motor controllers ${\color{black}\bullet}$

Valve Control

22/24

Assessment

1. A type of resistor network known as an R-2R ladder is often used

in digital-to-analog conversion circuits: why?

2. The output voltage magnitude stands independent of the number of

bits(sections) in the R-2R ladder network because-----

23/24

THANK YOU

DAC /16ECB204-LDC/N.Arunkumar,APi/ECE/SNSCT

24/24