SNS COLLEGE OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

19ECB204 - LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 3 - GATES AND MINIMIZATION TECHNIQUES

TOPIC 8 - QUINE- MC CLUSKEY METHOD OF MINIMIZATION

WHY QUINE- MC CLUSKEY METHOD OF MINIMIZATION?

$>k$ map is difficult to simplify the Boolean functions having more than 5 variables.
$>$ Quine-McClukey tabular method is a tabular method based on the concept of prime implicants.

QUINE- MC CLUSKEY METHOD OF

 MINIMIZATION
Prime Implicants(PI)

$>$ Group of minterms which cannot be combined with any other minterms or groups.

Essential Prime implicants (EPI)

\Rightarrow The essential prime implicant is a prime implicant in which one or more minterm are unique.
$>$ Contains atleast one minterm which is not contained in any other.

QUINE- MC CLUSKEY METHOD OF MINIMIZATION

Prime Implicants(PI) - Two parts

Part 1 - Find all prime implicants by an Exhaustive search.

Part 2 - Identify the Essential prime implicants obtained in part 1 and select from the remaining prime implicants which can give the perfect minimized expression

QUINE- MC CLUSKEY METHOD OF MINIMIZATION

Eg.
Simplify the following boolean expression using k map and verify it using Quine - Mc Cluskey method.
$Y(A, B, C, D)=\sum m(0,1,3,7,8,9,11,15)$

QUINE- MC CLUSKEY METHOD OF MINIMIZATION

>Arrange all the minterms accordingly to number of one's contained and from the groups having no one's, one 1's, two 1's, three 1's and so on...

Group	Minterm	Representation In Binary form ABCD	
1	m 0	0000	Zero 1's
2	m 1	0001	one 1's
m 8	1000	two 1's	
3	m 3	0011	three 1's
	m 9	1001	
4	m 7	0111	four 1's
5	m 15	1111	

ACTIVITY

Combination of Minterms into groups of

 two| Group | Minterm | Binary Representation A B C D |
| :---: | :---: | :---: |
| 0 | $\begin{aligned} & \mathrm{m0} \mathrm{~m} 1 \\ & \mathrm{m0} \text { _ } \mathrm{m} 8 \end{aligned}$ | $\left\lvert\, \begin{array}{lll} 0 & 0 & 0 \\ -- & 0 & -- \\ \hline \end{array}\right.$ |
| 1 | $\begin{aligned} & \mathrm{m} 1 _\mathrm{m} 3 \\ & \mathrm{~m} 1 _\mathrm{m} 9 \\ & \mathrm{~m} 8 _\mathrm{m} 9 \end{aligned}$ | $\left\lvert\, \begin{array}{lll} 0 & 0 & --1 \\ -- & 0 & 0 \\ 1 & 0 & 1 \end{array}\right.$ |
| 2 | $\begin{aligned} & \mathrm{m} 3 _m 7 \\ & \mathrm{~m} 3 _\mathrm{m} 11 \\ & \mathrm{~m} 9 _m 11 \end{aligned}$ | $\left\lvert\, \begin{array}{cccc} 0 & -- & 1 & 1 \\ --0 & 0 & 1 \\ 1 & 0 & 0 & -- \end{array}\right.$ |
| 3 | $\begin{aligned} & \mathrm{m} 7 _\mathrm{m} 15 \\ & \mathrm{~m} 11 _\mathrm{m} 15 \end{aligned}$ | $\begin{array}{\|ccc} --1 & 1 & 1 \\ 1 & -1 & 1 \end{array}$ |

Combination of Minterms into groups of

 four| Group | Minterm | Binary RepresentationA B C D | |
| :---: | :---: | :---: | :---: |
| 0 | $\begin{aligned} & \mathrm{m0} \mathrm{~m}_{1} \mathrm{~m} 1 _\mathrm{m} 8 _\mathrm{m} 9 \\ & \mathrm{m0} \mathrm{~m} 8 _\mathrm{m} 1 _\mathrm{m} 9 \end{aligned}$ | $\begin{array}{llll} \hline-- & 0 & 0 & -- \\ -- & 0 & 0 & -- \end{array}$ | $B^{\prime} C^{\prime}$ |
| 1 | $\begin{aligned} & \mathrm{m} 1 _\mathrm{m} 3 _\mathrm{m} 9 _\mathrm{m} 11 \\ & \mathrm{~m} 1 _\mathrm{m} 9 _m 3 _\mathrm{m} 11 \end{aligned}$ | $\left\lvert\, \begin{array}{llll} \hline-- & 0 & -- & 1 \\ -- & 0 & -- & 1 \end{array}\right.$ | B'D |
| 2 | $\begin{aligned} & \mathrm{m} 3 _\mathrm{m} 7 _\mathrm{m} 11 _\mathrm{m} 15 \\ & \mathrm{~m} 5 _\mathrm{m} 11 _\mathrm{m} 7 _\mathrm{m} 15 \end{aligned}$ | $\begin{array}{llll} -- & -- & 1 & 1 \\ -- & -- & 1 & 1 \end{array}$ | CD |

$Y(A, B, C, D)=B^{\prime} C^{\prime}+B^{\prime} D+C D$

Combination of Minterms into groups of
four

ASSESSMENTS

1.What is the another name for Quine Mc Cluskey method?
2.The starting point of the tabulation method that specifies the function is the----
3.Unchecked terms in the table forms are-----------
4. What is the first tabulation method?
5.State Prime Implicants.

THANK YOU

