SNS COLLEGE OF TECHNOLOGY

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECB202 - LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

Flip Flops/19ECB204/ LINEAR AND DIGITAL
CIRCUITS/Mr.N.Arunkumar/AP/ECE/SNSCT

UNIT 5 - SEQUENTIAL CIRCUITS and PLC

TOPIC 1 - FLIP FLOP FUNDAMENTALS and SR Flipflop

Sequential Circuits

- Sequential Logic:
- Output depends not only on current input but also on past input values, e.g., design a counter
- Need some type of memory to remember the past input values

Sequential Circuits

- Sequential Logic circuits remember past inputs and past circuit state.
- Outputs from the system are "fed back" as new inputs
- With gate delay and wire delay
- The storage elements are circuits that are capable of storing binary information: memory.

There are two types of sequential circuits:

- Synchronous sequential circuit: circuit output changes only at some discrete instants of time. This type of circuits achieves synchronization by using a timing signal called the clock.
- Asynchronous sequential circuit: circuit output can change at any time (clockless).

Flip Flops

$>$ In electronics a flip-flop or latch is a circuit that has two stable states and can be used to store state information -a bistable multivibrator.
$>$ The circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs.
$>$ Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems.
$>$ Flip-flops and latches are used as data storage elements.
A flip-flop is a device which stores a single bit(binary digit) of data; one of its two states represents a "one" and the other represents a "zero".

Flip Flops

Flip flop is a sequential circuit
$>$ It samples its inputs and changes its outputs only at particular instants of time and not continuously.

Flip flop is said to be edge sensitive or edge triggered rather than being level triggered like latches

TYPES

- SR Flip-Flop
- D Flip-Flop
- JK Flip-Flop
- T Flip-Flop

SR Flip Flop

SR Flip Flop

The Set State

$>$ If the input R is at logic level " 0 " $(\mathrm{R}=0) \& \mathrm{~S}$ is at logic level " 1 " $(\mathrm{S}=1)$
Its output Q must be at a logic level " 1 ".
$>$ Output $\overline{\mathrm{Q}}$ is also fed back to input "A"
$>$ Both inputs to NAND gate X are at logic level " 1 "
$>$ Its output Q must be at logic level " 0 ".
$>$ If the reset input R changes state, and goes HIGH to logic " 1 " with S remaining HIGH also at logic level " 1 "
$>$ NAND gate Y inputs are now $\mathrm{R}=" 1 "$ and $\mathrm{B}=" 0 "$.
$>$ Since one of its inputs is still at logic level " 0 " the output at $\overline{\mathrm{Q}}$ still remains HIGH at logic level " 1 " and there is no change of state.
$>$ Therefore, the flip-flop circuit is said to be "Latched" or "Set" with $\mathrm{Q}=$ " 1 " and $\mathrm{Q}=$ " 0 ".

SR Flip Flop

Reset State

\qquad
$>\overline{\mathrm{Q}}$ is at logic level " 0 ", its inverse output at Q is at logic level " 1 "
Given by $\mathrm{R}=$ " 1 " and $\mathrm{S}=$ " 0 ".
$>$ As gate X has one of its inputs at logic " 0 " its output Q must equal logic level " 1 " Output Q is fed back to input " B ", so both inputs to NAND gate Y are at logic " 1 ", therefore, $\overline{\mathrm{Q}}=$ " 0 ".
$>$ If the set input, S now changes state to logic " 1 " with input R remaining at logic " 1 " $>$ output $\overline{\mathrm{Q}}$ still remains LOW at logic level " 0 " and there is no change of state.
$>$ Therefore, the flip-flop circuits "Reset" state has also been latched

SR Flip Flop Truth Table

S-R flip flop behavior

Present state

The state of Q output at the time the input signals are applied.
Next state
The state of Q output after the flipflop has reacted to the input signals.

State	S	R	Q	$\overline{\mathrm{Q}}$	Description
Set	1	0	0	1	Set $\overline{\mathrm{Q}} » 1$
	1	1	0	1	no change
Reset	0	1	1	0	Reset $\overline{\mathrm{Q}} » 0$
	1	1	1	0	no change
Invalid	0	0	1	1	Invalid Condition

SR Flip Flop Truth Table

$>$ When both inputs $\mathrm{S}=$ " 1 " and $\mathrm{R}=$ " 1 " the outputs Q and Q can be at either logic level " 1 " or " 0 ", depending upon the state of the inputs S or R BEFORE this input condition existed. $>$ Therefore the condition of $\mathrm{S}=\mathrm{R}=$ " 1 " does not change the state of the outputs Q and $\overline{\mathrm{Q}}$.
$>$ The input state of $S=$ " 0 " and $\mathrm{R}=$ " 0 " is an undesirable or invalid condition
$>$ The condition of $\mathrm{S}=\mathrm{R}=$ " 0 " causes both outputs Q and Q to be HIGH together at logic level " 1 "
> The result is that the flip-flop looses control of Q and Q
\Rightarrow The flip-flop becomes unstable and switches to an unknown data state based upon the unbalance

SR Flip Flop Characteristic Equation

$$
Q(t+1)=S+R^{\prime} Q(t)
$$

SR Flip Flop Switching Diagram

