## SNS COLLEGE OF TECHNOLOGY

# DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING 

# 19ECB204 - LINEAR AND DIGITAL CIRCUITS 

II YEAR/ III SEMESTER

UNIT 4 - COMBINATIONAL and SEQUENTIAL CIRCUITS
TOPIC - Code Converters (Excess 3 to BCD and BCD to Excess 3)

## What is a Excess-3 and BCD code?

Excess-3 code is non-weighted and self complementary code.

BCD is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight.

BCD to Excess 3


## BCD to Excess 3

| MP NPMT |  |  |  | EMEST30-4T |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hi] | E ${ }^{2}$ | 61 | E0 | 13 | 12 | 11 | 10 |
| 0 | 0 | 0 | 9 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 6 | 1 | 1 | $\square$ | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 6 | 0 |
| 1 | 0 | 1 | 0 | X | $x$ | 8 | X |
| 1 | 0 | 1 | 1 | x | $x$ | T | $x$ |
| 1 | 1 | 0 | 0 | X | X | I | X |
| 1 | 1 | 0 | 1 | x | x | 5 | x |
| 1 | 1 | 1 | 9 | $x$ | $x$ | \% | $x$ |
| 1 | 1 | 1 | 1 | x | x | Y | x |

## BCD to Excess 3






## ACTIVITY



## Puzzle time

121015

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 12 |  |  |  | 13 |  |
|  |  |  |  |  |  |  |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 14 |  |  |  | 15 |  |
|  |  |  |  |  |  |  |

## Can you puit the numbers 1

 to 8 in each of the squares so that each side adids up to the middlle mumber?
## Excess 3 to BCD






## Excess 3 to BCD

Truth Table:

| Inputs |  |  |  |  | Outputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $\times$ | $\checkmark$ | $z$ |  | a | - | $c$ | $\square$ |
| $\square$ | $\bigcirc$ | 1 | 1 |  | $\bigcirc$ | $\bigcirc$ | $\square$ | $\bigcirc$ |
| a | 1 | $\square$ | $\square$ |  | 0 | - | $\square$ | 1 |
| a | 1 | a | 1 |  | - | a | I | a |
| a | 1 | 1 | $\bigcirc$ |  | $\bigcirc$ | a | \# | 1 |
| $\square$ | 1 | 1 | 1 |  | - | 1 | $\square$ | $\square$ |
| 1 | $\bigcirc$ | $\bigcirc$ | 0 |  | 0 | 1 | 0 | 1 |
| 1 | $\bigcirc$ | - | 1 |  | 0 | 1 | I | $\bigcirc$ |
| 1 | $\bigcirc$ | $\pm$ | - |  | $\cdots$ | 1 | \# | 1 |
| 1 | 0 | 1 | 1 |  | 1 | $\bigcirc$ | $\square$ | $\bigcirc$ |
| 1 | 1 | $\bigcirc$ | $\square$ |  | 1 | - | $\square$ | $\pm$ |

MAP
mox





## Excess- 3 to BCD Code



## ASSESSMENT

1. $\qquad$ a $\qquad$ is used in simplifying $\qquad$ b $\qquad$
b) APM ARNAKGHU
a) RACE TOND NOCIDIONT
2. Name the gate which is called a coincidence detector? Justify
3. Name the gate which can be used as switch? Justify your reason
4)How many AND gates and OR gates are required to realize the expression $Y=B D+C A+E F+G H$. Explain
5)The complement function can be done by using an $\qquad$ (RTENIERV

THANK YOU

