

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECB204 – LINEAR AND DIGITAL CIRCUITS

II YEAR/ III SEMESTER

UNIT 4 – COMBINATIONAL and SEQUENTIAL CIRCUITS

TOPIC - Code Converters (Excess 3 to BCD and BCD to Excess 3)

What is a Excess-3 and BCD code?

> Excess-3 code is non-weighted and self complementary code.

> BCD is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight.

BCD to Excess 3

•

BCD to Excess 3

	BCD INF	UT		EXCESS-3 OUPUT				
B3	82	B1	80	£3	£2	E1	E0	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	
1	0	1	0	X	X	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X	X	X	X	
1	1	0	1	X	X	X	X	
1	1	1	0	Х	X	X	X	
1	1	1	1	X	X	X	X	

BCD to Excess 3

1. BCD code to Excess-3 code converter.

Consider the logic diagram below for BCD to Excess-3 code converter

Figure 1: BCD to excess-3 code converter.

ACTIVITY

Excess 3 to BCD

2. Excess-3 code to BCD code converter.

Consider the logic diagram below for Excess-3 code to BCD converter

Figure 2: Excess-3 to BCD code converter

Excess 3 to BCD

Truth Table:

Inputs				Outputs				
~	×	Y	z	Α.	В	C	D	
0		1	1	0	0		0	
0	_ 1 _			- 0	- 0		_ 1	
0	_ 1		1	~		1	. 0	
0	_ 1	_ 1		0	- 0	1	1	
0	_ 1	_ 1	1 7	-	1	0	0	
1	. 0		0	~ 0	1		1	
1	. 0		1	•	1	1	0	
1		1	0	•	1	1	1	
1	0	1	1	1	0	0	0	
1	1	0	0	1	0	0:	1	

Fig: Map for A A = WX + WYZ

Fig: Map for C C = Y Z + YZ'OR $C = Y \oplus Z$

Fig: Map for DD = Z'

Excess- 3 to BCD Code

2. Excess-3 code to BCD code converter.

Consider the logic diagram below for Excess-3 code to BCD converter

Figure 2: Excess-3 to BCD code converter

ASSESSMENT

- 1. ____a is used in simplifying ____b
- b) APM ARNAKGHU
- a) RACE TOND NOCIDIONT
- 2. Name the gate which is called a coincidence detector? Justify
- 3. Name the gate which can be used as switch? Justify your reason
- 4)How many AND gates and OR gates are required to realize the expression Y=BD+CA+EF+GH. Explain
- 5)The complement function can be done by using an _____(RTENIERV

THANK YOU