

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MCA

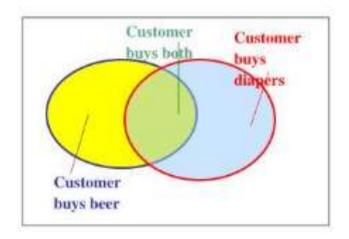
19CAT703 – MACHINE LEARNING

II YEAR III SEM

UNIT IV – TREE AND RULE MODELS

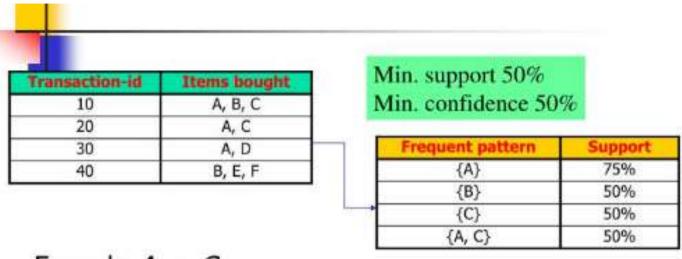
TOPIC 38 – Association Rule Mining

Association - Introduction


- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database
- Motivation: finding regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

Association Rule Mining-Introduction

	Items bought	Transaction-id 10	
٦	A, B, C		
٦	A, C	20	
7	A, D	30	
╗	B, E, F	40	

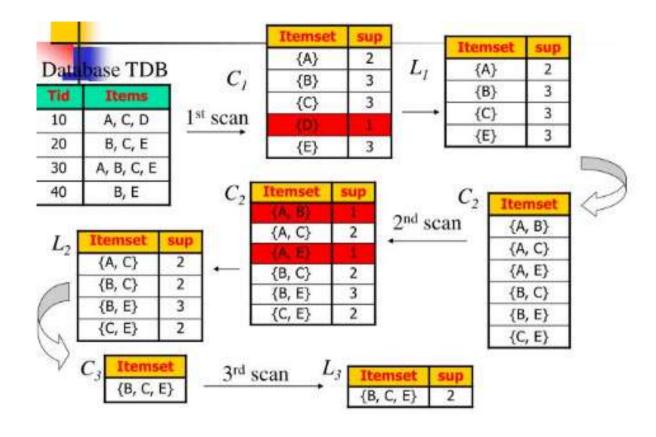

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules X→Y with min confidence and support
 - support, s, probability that a transaction contains X∪Y
 - confidence, c, conditional probability that a transaction having X also contains Y.

Let
$$min_support = 50\%$$
,
 $min_conf = 50\%$:
 $A \rightarrow C (50\%, 66.7\%)$
 $C \rightarrow A (50\%, 100\%)$

Example

For rule $A \Rightarrow C$: support = support($\{A\} \cup \{C\}$) = 50% confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

Apriori algorithm



- Any subset of a frequent itemset must be frequent
 - if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - generate length (k+1) candidate itemsets from length k frequent itemsets, and
 - test the candidates against DB
- The performance studies show its efficiency and scalability

Example: Market Basket Analysis

Apriori: Steps


```
Pseudo-code:
       C_k: Candidate itemset of size k L_k: frequent itemset of size k
      L_1 = \{\text{frequent items}\};

for (k = 1; L_k! = \emptyset; k++) do begin

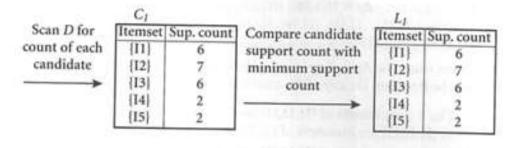
C_{k+1} = \text{candidates generated from } L_k;

for each transaction t in database do
                         increment the count of all candidates in C_{k+1}
                that are contained in t
             L_{k+1} = candidates in C_{k+1} with min_support
       return Uk Lki
```

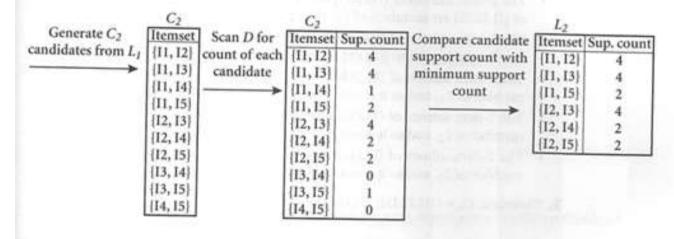

Meta Learning

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
 - Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄={abcd}

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1} insert into C_k select p.item_y p.item_y ..., p.item_{k-y} q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item₁=q.item_y ..., p.item_{k-2}=q.item_{k-2} p.item_{k-1} < q.item_{k-1}
- Step 2: pruning forall itemsets c in C_k do forall (k-1)-subsets s of c do if (s is not in L_{k-1}) then delete c from C_k



Example



TID	List of Items ID		
T100	I1, I2, I5		
T200	I2, I4		
T300	I2, I3		
T400	I1, I2, I4		
T500	I1, I3		
T600	12, 13		
T700	I1, I3		
T800	I1, I2, I3, I5		
T900	I1, I2, I3		

P	C_3		C_3			L_1	
Generate C ₃	Itemset	Scan D for	Itemset	Sup. count	Compare candidate	Itemset	Sup. count
candidates from L_2	{11,12,13}	count of each candidate	{11, 12, 13}	2	support count with minimum support	[11, 12, 13]	2
→	{11, 12, 15}		[11, 12, 15]	2	A THE RESIDENCE OF THE PARTY OF	[11, 12, 15]	2

14.10.2022 Approximate training Distribution in the Principal Prin

REFERENCE

- https://medium.com/ml-research-lab/
- https://en.wikipedia.org/wiki
- https://medium.com/abacus-ai/a-beginners-guide-to-meta-learning-73bb027007a

