
SNS COLLEGE OF TECHNOLOGY

COIMBATORE –35

(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Issues in the design of a code
generator

Code generator converts the intermediate representation of source code
into a form that can be readily executed by the machine. A code generator is
expected to generate the correct code. Designing of the code generator
should be done in such a way so that it can be easily implemented, tested,
and maintained.

The following issue arises during the code generation phase:

 Input to code generator – The input to the code generator is the
intermediate code generated by the front end, along with
information in the symbol table that determines the run-time
addresses of the data objects denoted by the names in the
intermediate representation. Intermediate codes may be
represented mostly in quadruples, triples, indirect triples, Postfix
notation, syntax trees, DAGs, etc. The code generation phase just
proceeds on an assumption that the input is free from all syntactic
and state semantic errors, the necessary type checking has taken
place and the type-conversion operators have been inserted
wherever necessary.

 Target program: The target program is the output of the code

generator. The output may be absolute machine language,
relocatable machine language, or assembly language.

 Absolute machine language as output has advantages
that it can be placed in a fixed memory location and can
be immediately executed.

 Relocatable machine language as an output allows
subprograms and subroutines to be compiled separately.
Relocatable object modules can be linked together and
loaded by a linking loader. But there is added expense of
linking and loading.

 Assembly language as output makes the code generation
easier. We can generate symbolic instructions and use the
macro-facilities of assemblers in generating code. And we
need an additional assembly step after code generation.

 Memory Management – Mapping the names in the source
program to the addresses of data objects is done by the front end
and the code generator. A name in the three address statements

refers to the symbol table entry for the name. Then from the symbol
table entry, a relative address can be determined for the name.

 Instruction selection – Selecting the best instructions will improve
the efficiency of the program. It includes the instructions that should
be complete and uniform. Instruction speeds and machine idioms
also play a major role when efficiency is considered. But if we do
not care about the efficiency of the target program then instruction
selection is straightforward. For example, the respective three-
address statements would be translated into the latter code
sequence as shown below:

P:=Q+R

S:=P+T

MOV Q, R0

ADD R, R0

MOV R0, P

MOV P, R0

ADD T, R0

MOV R0, S

Here the fourth statement is redundant as the value of the P is loaded again
in that statement that just has been stored in the previous statement. It leads
to an inefficient code sequence. A given intermediate representation can be
translated into many code sequences, with significant cost differences
between the different implementations. A prior knowledge of instruction cost
is needed in order to design good sequences, but accurate cost information

is difficult to predict.

 Register allocation issues – Use of registers make the

computations faster in comparison to that of memory, so efficient
utilization of registers is important. The use of registers are
subdivided into two subproblems:

1. During Register allocation – we select only those set of variables

that will reside in the registers at each point in the program.
2. During a subsequent Register assignment phase, the specific

register is picked to access the variable.
3. Evaluation order – The code generator decides the order in which

the instruction will be executed. The order of computations affects
the efficiency of the target code. Among many computational
orders, some will require only fewer registers to hold the
intermediate results. However, picking the best order in the general
case is a difficult NP-complete problem.

4. Approaches to code generation issues: Code generator must

always generate the correct code. It is essential because of the

number of special cases that a code generator might face. Some of
the design goals of code generator are:

 Correct
 Easily maintainable
 Testable
 Efficient

	Issues in the design of a code generator

