Link Analysis

Why link analysis?

- The web is **not** just a collection of documents its hyperlinks are important!
- A link from page A to page B may indicate:
 - A is related to B, or
 - -A is recommending, citing, voting for or endorsing B
- Links are either
 - referential *click here and get back home*, or
 - Informational *click here to get more detail*
- Links effect the ranking of web pages and thus have commercial value.

Citation Analysis

- The **impact factor** of a journal = A/B
 - A is the number of current year citations to articles appearing in the journal during previous two years.
 - B is the number of articles published in the journal during previous two years.

Journal Title (AI)	Impact Factor (2004)	
J. Mach. Learn. Res.	5.952	
IEEE T. Pattern Anal.	4.352	
IEEE T. Evolut. Comp.	3.688	
Artif. Intell.	3.570	
Mach. Learn.	3.258	

- A and B are co-cited by C, implying that – they are related or associated.
- The strength of co-citation between A and B is the number of times they are co-cited.

Clusters from Co-Citation Graph (Larson 96)

What is a Markov Chain?

- A Markov chain has two components:
- 1) A network structure much like a web site, where each node is called a state.
- 2) A transition probability of traversing a link given that the chain is in a state.
 - For each state the sum of outgoing probabilities is one.
- A sequence of steps through the chain is called a *random walk*.

Markov chains

 Markov chains have been extensively studied by statisticians and have been applied in a wide variety of areas.

$$P(S_{t} | S_{t-1}, S_{t-2}, \dots, S_{2}, S_{1}) = P(S_{t} | S_{t-1})$$

Markov Chain Example

PageRank - Motivation

- A link from page *A* to page *B* is a **vote** of the author of *A* for *B*, or a **recommendation** of the page.
- The number incoming links to a page is a measure of importance and authority of the page.
- Also take into account the quality of recommendation, so a page is more important if the sources of its incoming links are important.

The Random Surfer

- Assume the web is a Markov chain.
- Surfers randomly click on links, where the probability of an outlink from page A is 1/m, where m is the number of outlinks from A.
- The surfer occasionally gets *bored* and is *teleported* to another web page, say *B*, where *B* is equally likely to be any page.
- Using the theory of Markov chains it can be shown that if the surfer follows links for long enough, the PageRank of a web page is the probability that the surfer will visit that page.

Dangling Pages

- Problem: A and B have no outlinks.
- Solution: Assume A and B have links to all web pages with equal probability.

Rank Sink

- Problem: Pages in a loop accumulate rank but do not distribute it.
- Solution: Teleportation, i.e. with a certain probability the surfer can jump to any other web page to get out of the loop.

PageRank (PR) - Definition

$$PR(W) = \frac{T}{N} + (1 - T) \left(\frac{PR(W_1)}{O(W_1)} + \frac{PR(W_2)}{O(W_2)} + \dots + \frac{PR(W_n)}{O(W_n)} \right)$$

- *W* is a web page
- Wi are the web pages that have a link to W
- O(W*i*) is the number of outlinks from W*i*
- *T* is the teleportation probability
- *N* is the size of the web

Example Web Graph

Iteratively Computing PageRank

- Replace *T/N* in the def. of *PR*(W) by *T*, so *PR* will take values between 1 and *N*.
- T is normally set to 0.15, but for simplicity lets set it to 0.5
- Set initial PR values to 1
- Solve the following equations iteratively:

PR(A) = 0.5 + 0.5PR(C) PR(B) = 0.5 + 0.5(PR(A)/2)PR(C) = 0.5 + 0.5(PR(A)/2 + PR(B))

Example Computation of PR

Iteration	PR(A)	PR(B)	PR(C)
0	1	1	1
1	1	0.75	1.125
2	1.0625	0.765625	1.1484375
3	1.07421875	0.76855469	1.15283203
4	1.07641602	0.76910400	1.15365601
5	1.07682800	0.76920700	1.15381050
12	1.07692308	0.76923077	1.15384615

The Largest Matrix Computation in the World

- Computing PageRank can be done via matrix multiplication, where the matrix has 3 billion rows and columns.
- The matrix is sparse as average number of outlinks is between 7 and 8.
- Setting T = 0.15 or above requires at most 100 iterations to convergence.
- Researchers still trying to speed-up the computation.

Monte Carlo Methods in Computing PageRank

- Rather than following a single long random walk, the random surfer can follow many sampled random walks.
- Each walk starts at a random page and either teleports with probability *T* or continues choosing a link with uniform probability.
- The PR of a page is the proportion of times a sample random walk ended at that page.
- Rather than starting at a random page, start each walk a fixed number of times from each page.

Inlinks and Outlinks

- The number of incoming links to a web page is correlated to the PageRank, but ... this measure is a noisy metric!
- PageRank is biased against new pages (Googlearchy), why?
- The long tail of queries, gives less popular web pages some visibility.
- A single outlink to one in the community minimises the loss of PageRank within a community.

Personalised PageRank

$$PR(P) = Tv + (1 - T) \left(\frac{PR(W_1)}{O(W_1)} + \frac{PR(W_2)}{O(W_2)} + \dots + \frac{PR(W_n)}{O(W_n)} \right)$$

- Change T/N with Tv
- Instead of teleporting uniformly to any page we bias the jump prefer some pages over others.
 - E.g. v has 1 for your home page and 0 otherwise.
 - E.g. *v* prefers the topics you are interested in.

<u>HITS – Hubs and Authorities -</u> <u>Hyperlink-Induced Topic Search</u>

- A on the left is an **authority**
- A on the right is a hub

Pre-processing for HITS

- Collect the top *t* pages (say t = 200) based on the input query; call this the **root set**.
- 2) Extend the root set into a **base set** as follows, for all pages *p* in the root set:
 - 1) add to the root set all pages that *p* points to, and
 - 2) add to the root set up-to q pages that point to p (say q = 50).
- 3) Delete all links within the same web site in the base set resulting in a **focused sub-graph**.

Expanding the Root Set

HITS Algorithm – Iterate until Convergence

$$A(p) = \sum_{q \in B | q \to p} H(q)$$
$$H(p) = \sum_{q \in B | p \to q} A(q)$$

- *B* is the base set
- q and p are web pages in B
- *A*(*p*) is the authority score for *p*
- *H*(*p*) is the hub score for *p*

Applications of HITS

- Search engine querying (speed an issue)
- Finding web communities.
- Finding related pages.
- Populating categories in web directories.
- Citation analysis.

Communities on the Web

- A densely linked focused sub-graph of hubs and authorities is called a *community.*
- Over 100,000 emerging web communities have been discovered from a web crawl (a process called *trawling*).
- Alternatively, a community is a set of web pages *W* having at least as many links to pages in *W* as to pages outside *W*.

Weblogs influence on PageRank

- A weblog (or blog) is a frequently updated web site on a particular topic, made up of entries in reverse chronological order.
- Blogs are a rich source of links, and therfore their links influence PageRank.
- A "google bomb" is an attempt to influence the ranking of a web page for a given phrase by adding links to the page with the phrase as its anchor text.

Link Spamming to Improve PageRank

- Spam is the act of trying unfairly to gain a high ranking on a search engine for a web page without improving the user experience.
- *Link farms* join the farm by copying a hub page which links to all members.
- Selling links from sites with high PageRank.